mrfakename commited on
Commit
18d89f0
·
verified ·
1 Parent(s): 29cc87b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -0
app.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DESCR = """
2
+ # TTS Arena
3
+
4
+ Vote on different speech synthesis models!
5
+
6
+ ## Instructions
7
+
8
+ * Listen to two anonymous models
9
+ * Vote on which one is more natural and realistic
10
+ * If there's a tie, click Skip
11
+
12
+ *IMPORTANT: Do not only rank the outputs based on naturalness. Also rank based on intelligibility (can you actually tell what they're saying?) and other factors (does it sound like a human?).*
13
+
14
+ **When you're ready to begin, click the Start button below!** The model names will be revealed once you vote.
15
+ """.strip()
16
+ import gradio as gr
17
+ import random
18
+ import os
19
+ from datasets import load_dataset
20
+ dataset = load_dataset("ttseval/tts-arena", token=os.getenv('HF_TOKEN'))
21
+ theme = gr.themes.Base(
22
+ font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
23
+ )
24
+ model_names = {
25
+ 'styletts2': 'StyleTTS 2',
26
+ 'tacotron': 'Tacotron',
27
+ 'speedyspeech': 'Speedy Speech',
28
+ 'overflow': 'Overflow TTS',
29
+ 'vits': 'VITS',
30
+ 'vitsneon': 'VITS Neon',
31
+ 'neuralhmm': 'Neural HMM',
32
+ 'glow': 'Glow TTS',
33
+ 'fastpitch': 'FastPitch',
34
+ }
35
+ def get_random_split(existing_split=None):
36
+ choice = random.choice(list(dataset.keys()))
37
+ if existing_split and choice == existing_split:
38
+ return get_random_split(choice)
39
+ else:
40
+ return choice
41
+ def get_random_splits():
42
+ choice1 = get_random_split()
43
+ choice2 = get_random_split(choice1)
44
+ return (choice1, choice2)
45
+ def a_is_better(model1, model2):
46
+ chosen_model = model1
47
+ print(chosen_model)
48
+ return reload(model1, model2)
49
+ def b_is_better(model1, model2):
50
+ chosen_model = model2
51
+ print(chosen_model)
52
+ return reload(model1, model2)
53
+ def reload(chosenmodel1=None, chosenmodel2=None):
54
+ # Select random splits
55
+ split1, split2 = get_random_splits()
56
+ d1, d2 = (dataset[split1], dataset[split2])
57
+ choice1, choice2 = (d1.shuffle()[0]['audio'], d2.shuffle()[0]['audio'])
58
+ if split1 in model_names:
59
+ split1 = model_names[split1]
60
+ if split2 in model_names:
61
+ split2 = model_names[split2]
62
+ out = [
63
+ (choice1['sampling_rate'], choice1['array']),
64
+ (choice2['sampling_rate'], choice2['array']),
65
+ split1,
66
+ split2
67
+ ]
68
+ if chosenmodel1: out.append(f'This model was {chosenmodel1}')
69
+ if chosenmodel2: out.append(f'This model was {chosenmodel2}')
70
+ return out
71
+ with gr.Blocks(theme=theme) as demo:
72
+ # with gr.Blocks() as demo:
73
+ gr.Markdown(DESCR)
74
+ with gr.Row():
75
+ gr.HTML('<div align="left"><h3>Model A</h3></div>')
76
+ gr.HTML('<div align="right"><h3>Model B</h3></div>')
77
+ model1 = gr.Textbox(interactive=False, visible=False)
78
+ model2 = gr.Textbox(interactive=False, visible=False)
79
+ with gr.Group():
80
+ with gr.Row():
81
+ prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A")
82
+ prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right")
83
+ with gr.Row():
84
+ aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
85
+ aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
86
+ with gr.Row():
87
+ abetter = gr.Button("A is Better", scale=3)
88
+ skipbtn = gr.Button("Skip", scale=1)
89
+ bbetter = gr.Button("B is Better", scale=3)
90
+ outputs = [aud1, aud2, model1, model2, prevmodel1, prevmodel2]
91
+ abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2])
92
+ bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2])
93
+ skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2])
94
+ demo.load(reload, outputs=[aud1, aud2, model1, model2])
95
+ demo.queue(api_open=False).launch(show_api=False)