mrfakename commited on
Commit
20dc216
·
verified ·
1 Parent(s): 1d45e0d
Files changed (1) hide show
  1. app.py +113 -17
app.py CHANGED
@@ -2,7 +2,8 @@ DESCR = """
2
  # TTS Arena
3
 
4
  Vote on different speech synthesis models!
5
-
 
6
  ## Instructions
7
 
8
  * Listen to two anonymous models
@@ -13,10 +14,18 @@ Vote on different speech synthesis models!
13
 
14
  **When you're ready to begin, click the Start button below!** The model names will be revealed once you vote.
15
  """.strip()
 
 
 
 
 
16
  import gradio as gr
17
  import random
18
  import os
 
 
19
  from datasets import load_dataset
 
20
  dataset = load_dataset("ttseval/tts-arena", token=os.getenv('HF_TOKEN'))
21
  theme = gr.themes.Base(
22
  font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
@@ -24,6 +33,8 @@ theme = gr.themes.Base(
24
  model_names = {
25
  'styletts2': 'StyleTTS 2',
26
  'tacotron': 'Tacotron',
 
 
27
  'speedyspeech': 'Speedy Speech',
28
  'overflow': 'Overflow TTS',
29
  'vits': 'VITS',
@@ -31,6 +42,12 @@ model_names = {
31
  'neuralhmm': 'Neural HMM',
32
  'glow': 'Glow TTS',
33
  'fastpitch': 'FastPitch',
 
 
 
 
 
 
34
  }
35
  def get_random_split(existing_split=None):
36
  choice = random.choice(list(dataset.keys()))
@@ -38,27 +55,93 @@ def get_random_split(existing_split=None):
38
  return get_random_split(choice)
39
  else:
40
  return choice
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  def get_random_splits():
42
  choice1 = get_random_split()
43
  choice2 = get_random_split(choice1)
44
  return (choice1, choice2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  def a_is_better(model1, model2):
46
- chosen_model = model1
47
- print(chosen_model)
48
  return reload(model1, model2)
49
  def b_is_better(model1, model2):
50
- chosen_model = model2
51
- print(chosen_model)
 
 
 
 
 
 
 
 
52
  return reload(model1, model2)
53
  def reload(chosenmodel1=None, chosenmodel2=None):
54
  # Select random splits
55
  split1, split2 = get_random_splits()
56
  d1, d2 = (dataset[split1], dataset[split2])
57
  choice1, choice2 = (d1.shuffle()[0]['audio'], d2.shuffle()[0]['audio'])
58
- if split1 in model_names:
59
- split1 = model_names[split1]
60
- if split2 in model_names:
61
- split2 = model_names[split2]
62
  out = [
63
  (choice1['sampling_rate'], choice1['array']),
64
  (choice2['sampling_rate'], choice2['array']),
@@ -68,9 +151,12 @@ def reload(chosenmodel1=None, chosenmodel2=None):
68
  if chosenmodel1: out.append(f'This model was {chosenmodel1}')
69
  if chosenmodel2: out.append(f'This model was {chosenmodel2}')
70
  return out
71
- with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo:
72
- # with gr.Blocks() as demo:
73
- gr.Markdown(DESCR)
 
 
 
74
  with gr.Row():
75
  gr.HTML('<div align="left"><h3>Model A</h3></div>')
76
  gr.HTML('<div align="right"><h3>Model B</h3></div>')
@@ -83,13 +169,23 @@ with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo:
83
  with gr.Row():
84
  aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
85
  aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
86
- with gr.Row():
87
- abetter = gr.Button("A is Better", scale=3)
88
- skipbtn = gr.Button("Skip", scale=1)
89
- bbetter = gr.Button("B is Better", scale=3)
 
 
 
90
  outputs = [aud1, aud2, model1, model2, prevmodel1, prevmodel2]
91
  abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2])
92
  bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2])
93
  skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2])
94
- demo.load(reload, outputs=[aud1, aud2, model1, model2])
 
 
 
 
 
 
 
95
  demo.queue(api_open=False).launch(show_api=False)
 
2
  # TTS Arena
3
 
4
  Vote on different speech synthesis models!
5
+ """.strip()
6
+ INSTR = """
7
  ## Instructions
8
 
9
  * Listen to two anonymous models
 
14
 
15
  **When you're ready to begin, click the Start button below!** The model names will be revealed once you vote.
16
  """.strip()
17
+ LDESC = """
18
+ ## Leaderboard
19
+
20
+ A list of the models, based on how highly they are ranked!
21
+ """.strip()
22
  import gradio as gr
23
  import random
24
  import os
25
+ import pandas as pd
26
+ import sqlite3
27
  from datasets import load_dataset
28
+
29
  dataset = load_dataset("ttseval/tts-arena", token=os.getenv('HF_TOKEN'))
30
  theme = gr.themes.Base(
31
  font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
 
33
  model_names = {
34
  'styletts2': 'StyleTTS 2',
35
  'tacotron': 'Tacotron',
36
+ 'tacotronph': 'Tacotron Phoneme',
37
+ 'tacotrondca': 'Tacotron DCA',
38
  'speedyspeech': 'Speedy Speech',
39
  'overflow': 'Overflow TTS',
40
  'vits': 'VITS',
 
42
  'neuralhmm': 'Neural HMM',
43
  'glow': 'Glow TTS',
44
  'fastpitch': 'FastPitch',
45
+ 'jenny': 'Jenny',
46
+ 'tortoise': 'Tortoise TTS',
47
+ 'xtts2': 'XTTSv2',
48
+ 'xtts': 'XTTS',
49
+ 'elevenlabs': 'ElevenLabs',
50
+ 'speecht5': 'SpeechT5',
51
  }
52
  def get_random_split(existing_split=None):
53
  choice = random.choice(list(dataset.keys()))
 
55
  return get_random_split(choice)
56
  else:
57
  return choice
58
+ def get_db():
59
+ return sqlite3.connect('database.db')
60
+ def create_db():
61
+ conn = get_db()
62
+ cursor = conn.cursor()
63
+ cursor.execute('''
64
+ CREATE TABLE IF NOT EXISTS model (
65
+ name TEXT UNIQUE,
66
+ upvote INTEGER,
67
+ downvote INTEGER
68
+ );
69
+ ''')
70
+ create_db()
71
+ def get_data():
72
+ conn = get_db()
73
+ cursor = conn.cursor()
74
+ cursor.execute('SELECT name, upvote, downvote FROM model')
75
+ data = cursor.fetchall()
76
+ df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
77
+ df['name'] = df['name'].replace(model_names)
78
+ df['votes'] = df['upvote'] + df['downvote']
79
+ # df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score
80
+
81
+ ## ELO SCORE
82
+ df['score'] = 1200
83
+ for i in range(len(df)):
84
+ for j in range(len(df)):
85
+ if i != j:
86
+ expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400))
87
+ expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400))
88
+ actual_a = df['upvote'][i] / df['votes'][i]
89
+ actual_b = df['upvote'][j] / df['votes'][j]
90
+ df.at[i, 'score'] += 32 * (actual_a - expected_a)
91
+ df.at[j, 'score'] += 32 * (actual_b - expected_b)
92
+ df['score'] = round(df['score'])
93
+ ## ELO SCORE
94
+
95
+ df = df.sort_values(by='score', ascending=False)
96
+ # df = df[['name', 'score', 'upvote', 'votes']]
97
+ df = df[['name', 'score', 'votes']]
98
+ return df
99
+
100
  def get_random_splits():
101
  choice1 = get_random_split()
102
  choice2 = get_random_split(choice1)
103
  return (choice1, choice2)
104
+ def upvote_model(model):
105
+ conn = get_db()
106
+ cursor = conn.cursor()
107
+ cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,))
108
+ if cursor.rowcount == 0:
109
+ cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,))
110
+ conn.commit()
111
+ cursor.close()
112
+ def downvote_model(model):
113
+ conn = get_db()
114
+ cursor = conn.cursor()
115
+ cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,))
116
+ if cursor.rowcount == 0:
117
+ cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,))
118
+ conn.commit()
119
+ cursor.close()
120
  def a_is_better(model1, model2):
121
+ upvote_model(model1)
122
+ downvote_model(model2)
123
  return reload(model1, model2)
124
  def b_is_better(model1, model2):
125
+ upvote_model(model2)
126
+ downvote_model(model1)
127
+ return reload(model1, model2)
128
+ def both_bad(model1, model2):
129
+ downvote_model(model1)
130
+ downvote_model(model2)
131
+ return reload(model1, model2)
132
+ def both_good(model1, model2):
133
+ upvote_model(model1)
134
+ upvote_model(model2)
135
  return reload(model1, model2)
136
  def reload(chosenmodel1=None, chosenmodel2=None):
137
  # Select random splits
138
  split1, split2 = get_random_splits()
139
  d1, d2 = (dataset[split1], dataset[split2])
140
  choice1, choice2 = (d1.shuffle()[0]['audio'], d2.shuffle()[0]['audio'])
141
+ if chosenmodel1 in model_names:
142
+ chosenmodel1 = model_names[chosenmodel1]
143
+ if chosenmodel2 in model_names:
144
+ chosenmodel2 = model_names[chosenmodel2]
145
  out = [
146
  (choice1['sampling_rate'], choice1['array']),
147
  (choice2['sampling_rate'], choice2['array']),
 
151
  if chosenmodel1: out.append(f'This model was {chosenmodel1}')
152
  if chosenmodel2: out.append(f'This model was {chosenmodel2}')
153
  return out
154
+ with gr.Blocks() as leaderboard:
155
+ gr.Markdown(LDESC)
156
+ df = gr.Dataframe(interactive=False, value=get_data())
157
+ leaderboard.load(get_data, outputs=[df])
158
+ with gr.Blocks() as vote:
159
+ gr.Markdown(INSTR)
160
  with gr.Row():
161
  gr.HTML('<div align="left"><h3>Model A</h3></div>')
162
  gr.HTML('<div align="right"><h3>Model B</h3></div>')
 
169
  with gr.Row():
170
  aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
171
  aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
172
+ with gr.Row():
173
+ abetter = gr.Button("A is Better", variant='primary')
174
+ bbetter = gr.Button("B is Better", variant='primary')
175
+ with gr.Row():
176
+ bothbad = gr.Button("Both are Bad", scale=2)
177
+ skipbtn = gr.Button("Skip", scale=1)
178
+ bothgood = gr.Button("Both are Good", scale=2)
179
  outputs = [aud1, aud2, model1, model2, prevmodel1, prevmodel2]
180
  abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2])
181
  bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2])
182
  skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2])
183
+
184
+ bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2])
185
+ bothgood.click(both_good, outputs=outputs, inputs=[model1, model2])
186
+
187
+ vote.load(reload, outputs=[aud1, aud2, model1, model2])
188
+ with gr.Blocks(theme=theme, css="footer {visibility: hidden}") as demo:
189
+ gr.Markdown(DESCR)
190
+ gr.TabbedInterface([vote, leaderboard], ['Vote', 'Leaderboard'])
191
  demo.queue(api_open=False).launch(show_api=False)