Spaces:
Sleeping
Sleeping
PierreJousselin
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Replace with your Hugging Face model path
|
5 |
+
MODEL_NAME = "username/model-name"
|
6 |
+
|
7 |
+
# Load the model and tokenizer
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
10 |
+
|
11 |
+
# Define the function to interact with the model
|
12 |
+
def chat_with_model(input_text, max_length=100):
|
13 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
14 |
+
outputs = model.generate(inputs.input_ids, max_length=max_length, num_return_sequences=1, do_sample=True)
|
15 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
16 |
+
return response
|
17 |
+
|
18 |
+
# Set up the Gradio interface
|
19 |
+
interface = gr.Interface(
|
20 |
+
fn=chat_with_model,
|
21 |
+
inputs=[
|
22 |
+
gr.Textbox(lines=5, placeholder="Enter your text here...", label="Input Text"),
|
23 |
+
gr.Slider(minimum=50, maximum=500, step=10, value=100, label="Max Length")
|
24 |
+
],
|
25 |
+
outputs=gr.Textbox(lines=5, label="Response"),
|
26 |
+
title="Conversational Model",
|
27 |
+
description="A conversational chatbot powered by a Hugging Face model.",
|
28 |
+
)
|
29 |
+
|
30 |
+
# Launch the Gradio app
|
31 |
+
if __name__ == "__main__":
|
32 |
+
interface.launch()
|