PierreJousselin commited on
Commit
4df7568
·
verified ·
1 Parent(s): 95e3c6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -33
app.py CHANGED
@@ -1,38 +1,64 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- from transformers import AutoTokenizer
4
-
5
- # Set the model name and initialize the InferenceClient and tokenizer
6
- model_name = "PierreJousselin/lora_model" # Model name on Hugging Face
7
- client = InferenceClient(model_name)
8
- tokenizer = AutoTokenizer.from_pretrained(model_name)
9
-
10
- # Define the function to interact with the model
11
- def chat_with_model(input_text, max_length=100):
12
- # Tokenize the input text
13
- inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
14
-
15
- # Generate text using the Hugging Face Inference API
16
- result = client.text_generation(
17
- inputs=inputs["input_ids"].tolist(), # Send tokenized input
18
- parameters={"max_length": max_length + len(inputs["input_ids"][0]), "temperature": 1.0}
19
- )
20
-
21
- # Decode the generated text back to a readable format
22
- response = tokenizer.decode(result[0]["generated_text"], skip_special_tokens=True)
23
-
24
- return response
25
-
26
- # Set up the Gradio interface
27
- interface = gr.Interface(
28
- fn=chat_with_model,
29
- inputs=[gr.Textbox(lines=5, placeholder="Enter your text here...", label="Input Text"),
30
- gr.Slider(minimum=50, maximum=500, step=10, value=100, label="Max Length")],
31
- outputs=gr.Textbox(lines=5, label="Response"),
32
- title="Conversational Model",
33
- description="A conversational chatbot powered by a Hugging Face model using the InferenceClient."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  )
35
 
36
- # Launch the Gradio app
37
  if __name__ == "__main__":
38
- interface.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("PierreJousselin/lora_model")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
  )
61
 
62
+
63
  if __name__ == "__main__":
64
+ demo.launch()