PierreJousselin commited on
Commit
7dfe107
·
verified ·
1 Parent(s): 4794684

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -61
app.py CHANGED
@@ -1,64 +1,38 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load the fine-tuned model and tokenizer
5
+ model = AutoModelForCausalLM.from_pretrained("PierreJousselin/lora_model")
6
+ tokenizer = AutoTokenizer.from_pretrained("PierreJousselin/lora_model")
7
+
8
+ # Define the text generation function
9
+ def generate_text(prompt):
10
+ # Encode the input prompt
11
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
12
+
13
+ # Generate text using the model
14
+ generated_ids = model.generate(
15
+ input_ids,
16
+ max_length=150, # Maximum length of the generated text
17
+ num_return_sequences=1, # Number of sequences to generate
18
+ temperature=0.7, # Sampling temperature (controls randomness)
19
+ top_p=0.9, # Nucleus sampling (controls diversity)
20
+ top_k=50, # Top-k sampling (limits the number of next word candidates)
21
+ no_repeat_ngram_size=2, # Avoid repeating n-grams
22
+ )
23
+
24
+ # Decode the generated text
25
+ generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
26
+ return generated_text
27
+
28
+ # Create the Gradio interface
29
+ iface = gr.Interface(
30
+ fn=generate_text, # The function to call when the user provides input
31
+ inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), # Input box
32
+ outputs=gr.Textbox(), # Output box to display the generated text
33
+ title="Lora Fine-Tuned Language Model", # Interface title
34
+ description="This is a Gradio interface for the Lora fine-tuned language model. Enter a prompt to generate text.", # Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  )
36
 
37
+ # Launch the interface
38
+ iface.launch()