Spaces:
Sleeping
Sleeping
PierreJousselin
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the fine-tuned model and tokenizer
|
5 |
+
model = AutoModelForCausalLM.from_pretrained("PierreJousselin/lora_model")
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("PierreJousselin/lora_model")
|
7 |
+
|
8 |
+
# Define the text generation function
|
9 |
+
def generate_text(prompt):
|
10 |
+
# Encode the input prompt
|
11 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
12 |
+
|
13 |
+
# Generate text using the model
|
14 |
+
generated_ids = model.generate(
|
15 |
+
input_ids,
|
16 |
+
max_length=150, # Maximum length of the generated text
|
17 |
+
num_return_sequences=1, # Number of sequences to generate
|
18 |
+
temperature=0.7, # Sampling temperature (controls randomness)
|
19 |
+
top_p=0.9, # Nucleus sampling (controls diversity)
|
20 |
+
top_k=50, # Top-k sampling (limits the number of next word candidates)
|
21 |
+
no_repeat_ngram_size=2, # Avoid repeating n-grams
|
22 |
+
)
|
23 |
+
|
24 |
+
# Decode the generated text
|
25 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
26 |
+
return generated_text
|
27 |
+
|
28 |
+
# Create the Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=generate_text, # The function to call when the user provides input
|
31 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), # Input box
|
32 |
+
outputs=gr.Textbox(), # Output box to display the generated text
|
33 |
+
title="Lora Fine-Tuned Language Model", # Interface title
|
34 |
+
description="This is a Gradio interface for the Lora fine-tuned language model. Enter a prompt to generate text.", # Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
|
37 |
+
# Launch the interface
|
38 |
+
iface.launch()
|
|