Spaces:
Sleeping
Sleeping
PierreJousselin
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
|
4 |
-
# Load
|
5 |
-
model = AutoModelForCausalLM.from_pretrained("PierreJousselin/lora_model")
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("PierreJousselin/lora_model")
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
temperature=0.7, # Sampling temperature (controls randomness)
|
19 |
-
top_p=0.9, # Nucleus sampling (controls diversity)
|
20 |
-
top_k=50, # Top-k sampling (limits the number of next word candidates)
|
21 |
-
no_repeat_ngram_size=2, # Avoid repeating n-grams
|
22 |
-
pad_token_id=tokenizer.eos_token_id
|
23 |
-
)
|
24 |
|
25 |
-
# Decode
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
# Create
|
30 |
iface = gr.Interface(
|
31 |
-
fn=
|
32 |
-
inputs=gr.Textbox(
|
33 |
-
outputs=gr.Textbox(), # Output
|
34 |
-
|
35 |
-
|
36 |
)
|
37 |
|
38 |
-
# Launch the interface
|
39 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load your model and tokenizer from Hugging Face Hub (forcing CPU usage)
|
|
|
|
|
6 |
|
7 |
+
# model_name = "PierreJousselin/lora_model" # Replace with the name you used on Hugging Face
|
8 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu") # Force model to load on CPU
|
9 |
+
|
10 |
+
model_id = "unsloth/Phi-3.5-mini-instruct"
|
11 |
+
peft_model_id = "PierreJousselin/phi"
|
12 |
+
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
14 |
+
model.load_adapter(peft_model_id)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
16 |
+
|
17 |
+
# Ensure pad_token_id is set to eos_token_id to avoid errors
|
18 |
+
model.config.pad_token_id = model.config.eos_token_id
|
19 |
+
|
20 |
+
# Function for generating responses using the model
|
21 |
+
def generate_response(prompt):
|
22 |
+
# Tokenize input prompt
|
23 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
24 |
|
25 |
+
# Ensure the inputs are moved to the CPU
|
26 |
+
input_ids = inputs["input_ids"].to("cpu")
|
27 |
+
print(input_ids)
|
28 |
+
# Generate output (ensure it's on CPU)
|
29 |
+
output = model.generate(input_ids, max_length=150, num_return_sequences=1,pad_token_id=tokenizer.eos_token_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Decode and return response
|
32 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
33 |
+
print(output)
|
34 |
+
return response
|
35 |
|
36 |
+
# Create a Gradio interface with a "Generate" button
|
37 |
iface = gr.Interface(
|
38 |
+
fn=generate_response, # Function to call for generating response
|
39 |
+
inputs=gr.Textbox(label="Input Prompt"), # Input type (text box for prompt)
|
40 |
+
outputs=gr.Textbox(label="Generated Response"), # Output type (text box for response)
|
41 |
+
live=False, # Disable live update; only update when button is clicked
|
42 |
+
allow_flagging="never" # Prevent flagging (optional, if you don't need it)
|
43 |
)
|
44 |
|
45 |
+
# Launch the interface with a "Generate" button
|
46 |
+
iface.launch(share=True) # You can set share=True if you want a public link
|