PierreJousselin commited on
Commit
4e297d8
·
verified ·
1 Parent(s): ee95af0

Update daily_energy_pipeline.py

Browse files
Files changed (1) hide show
  1. daily_energy_pipeline.py +48 -48
daily_energy_pipeline.py CHANGED
@@ -1,49 +1,49 @@
1
- import datetime
2
- import pandas as pd
3
- import os
4
- from entsoe import EntsoePandasClient
5
- from pymongo.mongo_client import MongoClient
6
- from pymongo.server_api import ServerApi
7
-
8
- entsoe_api_key = os.getenv("ENSTO_API")
9
- mongo_password= os.getenv("mango_password")
10
- client = EntsoePandasClient(api_key=entsoe_api_key)
11
- country_code = "SE_3"
12
- energy_load_data = pd.DataFrame()
13
-
14
- start_date = pd.Timestamp(
15
- datetime.datetime.now() + datetime.timedelta(days=-2), tz="Europe/Berlin"
16
- )
17
- end_date = pd.Timestamp(
18
- datetime.datetime.now() + datetime.timedelta(days=1), tz="Europe/Berlin"
19
- )
20
-
21
-
22
-
23
- load = client.query_load(country_code, start=start_date, end=end_date)
24
- if load is not None and not load.empty:
25
- # Resample hourly data to daily averages
26
- daily_load = load.resample("D").mean()
27
- daily_load = daily_load.reset_index()
28
- daily_load.columns = ["date", "load"]
29
-
30
- # Append to the main DataFrame
31
- energy_load_data = pd.concat([energy_load_data, daily_load], axis=0)
32
- energy_load_data['country_code']=country_code
33
-
34
-
35
- energy_load_data['date'] = pd.to_datetime(energy_load_data['date'], format='%Y-%m-%d')
36
- energy_load_data['date'] = pd.to_datetime(energy_load_data['date']).dt.date
37
- energy_load_data['date'] = pd.to_datetime(energy_load_data['date'])
38
- energy_load_data = energy_load_data.iloc[[-1]]
39
-
40
-
41
- uri = "mongodb+srv://pgmjo:"+mongo_password+"@cluster0.noq3s.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0"
42
- # Create a new client and connect to the server
43
- client = MongoClient(uri)
44
- db = client["daily_energy_load"] # Replace 'mydatabase' with your database name
45
- collection = db["S3"] # Replace 'mycollection' with your collection name
46
- data_dict = energy_load_data.to_dict("records")
47
-
48
- # Insérer dans la collection MongoDB
49
  result = collection.insert_many(data_dict)
 
1
+ import datetime
2
+ import pandas as pd
3
+ import os
4
+ from entsoe import EntsoePandasClient
5
+ from pymongo.mongo_client import MongoClient
6
+ from pymongo.server_api import ServerApi
7
+
8
+ entsoe_api_key = "22cb6d0f-5368-4495-95b0-3856c4bb6f7b"
9
+ mongo_password= "aIdg0yUMUaZHyVN7"
10
+ client = EntsoePandasClient(api_key=entsoe_api_key)
11
+ country_code = "SE_3"
12
+ energy_load_data = pd.DataFrame()
13
+
14
+ start_date = pd.Timestamp(
15
+ datetime.datetime.now() + datetime.timedelta(days=-2), tz="Europe/Berlin"
16
+ )
17
+ end_date = pd.Timestamp(
18
+ datetime.datetime.now() + datetime.timedelta(days=1), tz="Europe/Berlin"
19
+ )
20
+
21
+
22
+
23
+ load = client.query_load(country_code, start=start_date, end=end_date)
24
+ if load is not None and not load.empty:
25
+ # Resample hourly data to daily averages
26
+ daily_load = load.resample("D").mean()
27
+ daily_load = daily_load.reset_index()
28
+ daily_load.columns = ["date", "load"]
29
+
30
+ # Append to the main DataFrame
31
+ energy_load_data = pd.concat([energy_load_data, daily_load], axis=0)
32
+ energy_load_data['country_code']=country_code
33
+
34
+
35
+ energy_load_data['date'] = pd.to_datetime(energy_load_data['date'], format='%Y-%m-%d')
36
+ energy_load_data['date'] = pd.to_datetime(energy_load_data['date']).dt.date
37
+ energy_load_data['date'] = pd.to_datetime(energy_load_data['date'])
38
+ energy_load_data = energy_load_data.iloc[[-1]]
39
+
40
+
41
+ uri = "mongodb+srv://pgmjo:"+mongo_password+"@cluster0.noq3s.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0"
42
+ # Create a new client and connect to the server
43
+ client = MongoClient(uri)
44
+ db = client["daily_energy_load"] # Replace 'mydatabase' with your database name
45
+ collection = db["S3"] # Replace 'mycollection' with your collection name
46
+ data_dict = energy_load_data.to_dict("records")
47
+
48
+ # Insérer dans la collection MongoDB
49
  result = collection.insert_many(data_dict)