ia-subvention / rag.py
feat: comment out document retrieval in chatbot and rag modules for debugging purposes
0d7fb92
import os
import streamlit as st
from dotenv import load_dotenv
from langchain_community.vectorstores import FAISS
from langchain_mistralai.chat_models import ChatMistralAI
from langchain_mistralai.embeddings import MistralAIEmbeddings
from langchain.schema.output_parser import StrOutputParser
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema.runnable import RunnablePassthrough
from langchain.prompts import PromptTemplate
from langchain_community.vectorstores.utils import filter_complex_metadata
from langchain_community.document_loaders.csv_loader import CSVLoader
from util import getYamlConfig
# load .env in local dev
load_dotenv()
env_api_key = os.environ.get("MISTRAL_API_KEY")
class Rag:
document_vector_store = None
retriever = None
chain = None
readableModelName = ""
def __init__(self, vectore_store=None):
# self.model = ChatMistralAI(model=llm_model)
self.embedding = MistralAIEmbeddings(model="mistral-embed", mistral_api_key=env_api_key)
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100, length_function=len)
base_template = getYamlConfig()['prompt_template']
self.prompt = PromptTemplate.from_template(base_template)
self.vector_store = vectore_store
def setModel(self, model, readableModelName = ""):
self.model = model
self.readableModelName = readableModelName
def getReadableModel(self):
return self.readableModelName
def ingestToDb(self, file_path: str, filename: str):
docs = PyPDFLoader(file_path=file_path).load()
# Extract all text from the document
text = ""
for page in docs:
text += page.page_content
# Split the text into chunks
chunks = self.text_splitter.split_text(text)
return self.vector_store.addDoc(filename=filename, text_chunks=chunks, embedding=self.embedding)
def getDbFiles(self):
return self.vector_store.getDocs()
def ingest(self, pdf_file_path: str):
docs = PyPDFLoader(file_path=pdf_file_path).load()
chunks = self.text_splitter.split_documents(docs)
chunks = filter_complex_metadata(chunks)
document_vector_store = FAISS.from_documents(chunks, self.embedding)
self.retriever = document_vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={
"k": 5,
"score_threshold": 0.6,
},
)
def ask(self, query: str, prompt_system: str = '', messages: list = [], variables: list = None):
self.chain = self.prompt | self.model | StrOutputParser()
if len(messages) > 0:
systemMessage = messages[0]
empower_query = systemMessage.content + " " + query
else:
empower_query = query
# Retrieve the context document
if self.retriever is None:
documentContext = ''
else:
documentContext = self.retriever.invoke(empower_query)
# Retrieve the VectoreStore
contextCommon = self.vector_store.retriever(empower_query, self.embedding)
# st.session_state["retrived_documents"].append({ "query": query, "documents": contextCommon })
# Dictionnaire de base avec les variables principales
chain_input = {
"query": query,
"documentContext": documentContext,
"commonContext": contextCommon,
# "prompt_system": prompt_system,
"messages": messages
}
# Suppression des valeurs nulles (facultatif)
chain_input = {k: v for k, v in chain_input.items() if v is not None}
# Si des variables sous forme de liste sont fournies
if variables:
# Convertir la liste en dictionnaire avec 'key' comme clé et 'value' comme valeur
extra_vars = {item['key']: item['value'] for item in variables if 'key' in item and 'value' in item}
# Fusionner avec chain_input
chain_input.update(extra_vars)
return self.chain.stream(chain_input)
def clear(self):
self.document_vector_store = None
self.vector_store = None
self.retriever = None
self.chain = None