Spaces:
Build error
Build error
import os | |
import streamlit as st | |
from transformers import AutoModel, AutoTokenizer | |
# Access the Hugging Face token from environment variables | |
hf_token = os.getenv('HUGGING_FACE_HUB_TOKEN') | |
# Load the model and tokenizer with the token from environment variables | |
model = AutoModel.from_pretrained('naver/cocom-v1-128-mistral-7b', trust_remote_code=True, use_auth_token=hf_token) | |
model = model.to('cuda') | |
tokenizer = AutoTokenizer.from_pretrained('naver/cocom-v1-128-mistral-7b') | |
def generate_answer(contexts, questions): | |
inputs = tokenizer(questions, contexts, return_tensors='pt', padding=True, truncation=True) | |
inputs = {key: value.to('cuda') for key, value in inputs.items()} | |
outputs = model(**inputs) | |
return ["Generated answer here"] # Replace with actual generation logic | |
st.title("LLM Model Testing") | |
context = st.text_area("Enter context:") | |
question = st.text_input("Enter your question:") | |
if st.button("Generate Answer"): | |
with st.spinner("Generating..."): | |
try: | |
answers = generate_answer([context], [question]) | |
st.success("Generated Answer:") | |
st.write(answers[0]) | |
except Exception as e: | |
st.error(f"Error generating answer: {e}") | |