Spaces:
Sleeping
Sleeping
from pathlib import Path | |
from typing import List, Dict, Tuple | |
import matplotlib.colors as mpl_colors | |
import pandas as pd | |
import seaborn as sns | |
import shinyswatch | |
import shiny.experimental as x | |
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui | |
sns.set_theme() | |
www_dir = Path(__file__).parent.resolve() / "www" | |
df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA") | |
numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist() | |
species: List[str] = df["Species"].unique().tolist() | |
species.sort() | |
app_ui = x.ui.page_fillable( | |
shinyswatch.theme.minty(), | |
ui.layout_sidebar( | |
ui.panel_sidebar( | |
# Artwork by @allison_horst | |
ui.input_selectize( | |
"xvar", | |
"X variable", | |
numeric_cols, | |
selected="Bill Length (mm)", | |
), | |
ui.input_selectize( | |
"yvar", | |
"Y variable", | |
numeric_cols, | |
selected="Bill Depth (mm)", | |
), | |
ui.input_checkbox_group( | |
"species", "Filter by species", species, selected=species | |
), | |
ui.hr(), | |
ui.input_switch("by_species", "Show species", value=True), | |
ui.input_switch("show_margins", "Show marginal plots", value=True), | |
width=2, | |
), | |
ui.panel_main( | |
ui.output_ui("value_boxes"), | |
x.ui.output_plot("scatter", fill=True), | |
ui.help_text( | |
"Artwork by ", | |
ui.a("@allison_horst", href="https://twitter.com/allison_horst"), | |
class_="text-end", | |
), | |
), | |
), | |
) | |
def server(input: Inputs, output: Outputs, session: Session): | |
def filtered_df() -> pd.DataFrame: | |
"""Returns a Pandas data frame that includes only the desired rows""" | |
# This calculation "req"uires that at least one species is selected | |
req(len(input.species()) > 0) | |
# Filter the rows so we only include the desired species | |
return df[df["Species"].isin(input.species())] | |
def scatter(): | |
"""Generates a plot for Shiny to display to the user""" | |
# The plotting function to use depends on whether margins are desired | |
plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot | |
plotfunc( | |
data=filtered_df(), | |
x=input.xvar(), | |
y=input.yvar(), | |
palette=palette, | |
hue="Species" if input.by_species() else None, | |
hue_order=species, | |
legend=False, | |
) | |
def value_boxes(): | |
df = filtered_df() | |
def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str): | |
return x.ui.value_box( | |
title, | |
count, | |
{"class_": "pt-1 pb-0"}, | |
showcase=x.ui.as_fill_item( | |
ui.tags.img( | |
{"style": "object-fit:contain;"}, | |
src=showcase_img, | |
) | |
), | |
theme_color=None, | |
style=f"background-color: {bgcol};", | |
) | |
if not input.by_species(): | |
return penguin_value_box( | |
"Penguins", | |
len(df.index), | |
bg_palette["default"], | |
# Artwork by @allison_horst | |
showcase_img="penguins.png", | |
) | |
value_boxes = [ | |
penguin_value_box( | |
name, | |
len(df[df["Species"] == name]), | |
bg_palette[name], | |
# Artwork by @allison_horst | |
showcase_img=f"{name}.png", | |
) | |
for name in species | |
# Only include boxes for _selected_ species | |
if name in input.species() | |
] | |
return x.ui.layout_column_wrap(1 / len(value_boxes), *value_boxes) | |
# "darkorange", "purple", "cyan4" | |
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]] | |
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors] | |
palette: Dict[str, Tuple[float, float, float]] = { | |
"Adelie": colors[0], | |
"Chinstrap": colors[1], | |
"Gentoo": colors[2], | |
"default": sns.color_palette()[0], # type: ignore | |
} | |
bg_palette = {} | |
# Use `sns.set_style("whitegrid")` to help find approx alpha value | |
for name, col in palette.items(): | |
# Adjusted n_colors until `axe` accessibility did not complain about color contrast | |
bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore | |
app = App( | |
app_ui, | |
server, | |
static_assets=str(www_dir), | |
) | |