Doctor / app.py
Poonawala's picture
Upload 2 files
c7f21fc verified
raw
history blame
5.01 kB
# Configure page settings (MUST BE FIRST STREAMLIT COMMAND)
import streamlit as st
from streamlit_option_menu import option_menu
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from PyPDF2 import PdfReader
# Set page config
st.set_page_config(
page_title="Disease Analysis GPT",
layout="wide",
initial_sidebar_state="expanded"
)
# Load Hugging Face models and tokenizer for text generation
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("harishussain12/Disease_Managment")
model = AutoModelForCausalLM.from_pretrained("harishussain12/Disease_Managment")
return tokenizer, model
# Function to create a text generation pipeline
@st.cache_resource
def create_pipeline():
tokenizer, model = load_model()
return pipeline("text-generation", model=model, tokenizer=tokenizer)
# Function to extract text from PDF file
def read_pdf(file):
try:
reader = PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
except Exception as e:
return f"Error reading PDF: {e}"
# Load pipelines
text_pipeline = create_pipeline()
# Custom CSS for styling
st.markdown(
"""
<style>
body {
font-family: 'Arial', sans-serif;
}
.stButton button {
background-color: #0b2545;
color: white;
border: none;
border-radius: 25px;
padding: 8px 20px;
font-size: 14px;
font-weight: bold;
cursor: pointer;
}
.stButton button:hover {
background-color: #0a1b35;
}
.search-box {
border-radius: 20px;
border: 1px solid #ccc;
padding: 10px;
width: 100%;
font-size: 16px;
background-color: #ffffff;
}
.info-box {
background-color: #f8f9fa;
border-left: 5px solid #0b2545;
padding: 15px;
border-radius: 5px;
font-size: 14px;
}
</style>
""",
unsafe_allow_html=True
)
# Sidebar
with st.sidebar:
new_chat_button = st.button("New Chat", key="new_chat", help="Start a new chat to ask a different question.")
if new_chat_button:
st.session_state.clear() # Clear session state to simulate a new chat
selected = option_menu(
menu_title=None,
options=[" Home", " Discover"],
icons=["house", "search"],
menu_icon="cast",
default_index=0,
styles={
"container": {"padding": "0!important", "background-color": "#3e4a5b"},
"icon": {"color": "#ffffff", "font-size": "16px"},
"nav-link": {
"font-size": "15px",
"text-align": "left",
"margin": "0px",
"color": "#ffffff",
"font-weight": "bold",
"padding": "10px 20px",
},
"nav-link-selected": {"background-color": "#0b2545", "color": "white"},
}
)
# Main content
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
st.markdown("<h1 style='text-align: center;'>Disease Analysis GPT</h1>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center;'>What do you want to know?</h3>", unsafe_allow_html=True)
# Model selection (now including Document Analysis)
model_selection = st.selectbox(
"Select a model",
options=["Disease Analysis", "Document Analysis"],
index=0
)
# If the user selects Document Analysis, show an error and prompt them to switch to Disease Analysis
if model_selection == "Document Analysis":
st.error("Please switch to 'Disease Analysis' model for generating responses. Document Analysis is not available in this version.")
# Search box
search_input = st.text_input(
"",
placeholder="Type your question here...",
label_visibility="collapsed",
help="Ask anything related to disease management."
)
# File upload below search box
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf", help="Attach relevant files or documents to your query.")
if search_input:
with st.spinner("Generating response..."):
try:
if model_selection == "Disease Analysis":
context = ""
if uploaded_file is not None:
file_content = read_pdf(uploaded_file)
if "Error" in file_content:
st.error(file_content)
else:
context = file_content
query_input = search_input + (f"\n\nContext:\n{context}" if context else "")
response = text_pipeline(query_input, max_length=200, num_return_sequences=1)
st.markdown(f"### Response:\n{response[0]['generated_text']}")
except Exception as e:
st.error(f"Error generating response: {str(e)}")