Spaces:
Runtime error
Runtime error
File size: 4,682 Bytes
a216b49 7f48d7f a216b49 7f48d7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
title: OCR TextVision
emoji: π
colorFrom: indigo
colorTo: red
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
short_description: A web-based Optical Character Recognition (OCR) application
---
# TextVision OCR Project
## Overview
TextVision is a web-based Optical Character Recognition (OCR) application that extracts text from images containing both Hindi and English text. The application also supports keyword search functionality to highlight specific words within the extracted text. It is built with a simple, intuitive interface and supports five languages: Hindi, English, Spanish, French, and Punjabi.
This project was developed as part of an assignment for a job application.
Live Demo: [TextVision on Hugging Face Spaces](https://huggingface.co/spaces/Prabhjotschugh/OCR-TextVision)
## Features
- **Image Upload**: Upload an image and extract text using OCR.
- **Multi-language Support**: Supports Hindi, English, Spanish, French, and Punjabi.
- **Keyword Search**: Search for specific keywords in the extracted text, with results highlighted if the keyword is found.
- **User-friendly Interface**: Built using Gradio, offering an intuitive and simple user experience.
## Technology Stack
- **Python 3.9+**
- **Gradio 3.50.2** for the web interface
- **PyTesseract 0.3.10** for OCR functionality
- **Pillow 10.0.1** for image processing
- **Tesseract OCR 5.3.1** as the OCR engine
## Setup and Installation (Windows)
### Installation Steps
1. **Clone or Download the Repository**:
- Using Git:
```bash
git clone https://huggingface.co/spaces/Prabhjotschugh/OCR-TextVision
cd OCR-TextVision
```
- Alternatively, download the ZIP from Hugging Face and extract it.
2. **Set up a Virtual Environment** (recommended):
```bash
python -m venv venv
venv\Scripts\activate
```
3. **Install Required Python Packages**:
```bash
pip install -r requirements.txt
```
4. **Install Tesseract OCR**:
- Download the Tesseract installer from [UB Mannheim](https://github.com/UB-Mannheim/tesseract/wiki).
- Install it and note the installation path (default: `C:\Program Files\Tesseract-OCR`).
- Add Tesseract to your system PATH:
- Search for "Environment Variables" in the Start menu.
- Under "System variables", find "Path", click "Edit", and add the Tesseract installation path.
5. **Install Language Data for Tesseract**:
- Download language data files for Hindi (hin), Spanish (spa), French (fra), and Punjabi (pan) from [Tesseract GitHub](https://github.com/tesseract-ocr/tessdata).
- Place them in the `tessdata` folder of your Tesseract installation directory.
6. **Configure the Application**:
- Open `app.py` in a text editor.
- Find the line:
```python
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
```
- Replace it with:
```python
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
```
## Running the Application
1. Open a command prompt in the project directory.
2. Activate the virtual environment (if using one):
```bash
venv\Scripts\activate
```
3. Start the application:
```bash
python app.py
```
4. Open a web browser and navigate to `http://localhost:7860` to access the web interface.
## Usage Instructions
1. **Upload an Image**:
- Click on the image upload area or drag and drop an image file.
- Supported formats: JPEG, PNG, and other common image formats.
2. **Extract Text**:
- After uploading the image, click "Extract Text."
- The extracted text will be displayed in the output area.
3. **Keyword Search**:
- Check the "Do you want to search for a keyword?" box.
- Enter a keyword, then click "Search Keyword."
- The keyword, if found, will be highlighted in the extracted text.
4. **Clear Results**:
- Click "Clear" to reset the interface and upload a new image.
## Example Outputs
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6522888cb903b175b0db01e7/wJMcAeD6uvExq874H8RdC.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6522888cb903b175b0db01e7/krnEemdDfYI8XbBC1hZxJ.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6522888cb903b175b0db01e7/r7VuUWysnreYGeju7P4aP.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6522888cb903b175b0db01e7/2O4jH3iL5zAi-XPJBKuQB.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6522888cb903b175b0db01e7/3Y256ZpWkT4jqMPO9tiMP.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6522888cb903b175b0db01e7/7bz16oGtOdfAIs_hj5e3V.png) |