PranomVignesh's picture
Update app.py
54ce086
raw
history blame
1.79 kB
import gradio as gr
import yolov5
import os
from transformers import pipeline
imageClassifier = pipeline(task="image-classification",
model="PranomVignesh/Police-vs-Public")
model = yolov5.load('./best.pt', device="cpu")
def predict(image):
results = model([image], size=224)
print(results)
predictions = imageClassifier(image)
classMappings = {
'police': "Police / Authorized Personnel",
'public': 'Unauthorized Person'
}
output = {}
for item in predictions:
output[classMappings[item['label']]] = item['score']
return results.render()[0], output
title = "Detecting Unauthorized Individuals with Firearms"
description = """
Try the examples at bottom to get started.
"""
examples = [
[os.path.join(os.path.abspath(''), './examples/sample_1.png')],
[os.path.join(os.path.abspath(''), './examples/sample_2.png')],
[os.path.join(os.path.abspath(''), './examples/sample_3.jpg')],
[os.path.join(os.path.abspath(''), './examples/sample_4.jpg')],
[os.path.join(os.path.abspath(''), './examples/sample_5.jpg')],
[os.path.join(os.path.abspath(''), './examples/sample_6.jpg')],
[os.path.join(os.path.abspath(''), './examples/sample_7.jpg')],
[os.path.join(os.path.abspath(''), './examples/sample_8.jpg')],
]
inputs = gr.Image(type="pil", shape=(224, 224),
label="Upload your image for detection")
outputs = [
gr.Image(type="pil", label="Gun Detections"),
gr.Label(label="Class Prediction")
]
interface = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title=title,
examples=examples,
description=description,
cache_examples=True,
theme='huggingface'
)
interface.launch(debug=True, enable_queue=True)