PranomVignesh's picture
Duplicate from smyu/custom-tr-ocr
7f8a777
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import requests
from PIL import Image
import os
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("ericvo/scribbl-scan-trocr")
# load image examples
urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU',
'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU']
for idx, url in enumerate(urls):
image = Image.open(requests.get(url, stream=True).raw)
image.save(f"image_{idx}.png")
def process_image(image):
# prepare image
pixel_values = processor(image, return_tensors="pt").pixel_values
# generate (no beam search)
generated_ids = model.generate(pixel_values)
# decode
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
title = "TrOCR - Fine tuned on IAM Dataset"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
#css = """.output_image, .input_image {height: 600px !important}"""
examples = [
[os.path.join(os.path.abspath(''), './examples/sample_1.jpg')],
[os.path.join(os.path.abspath(''), './examples/sample_2.jpg')],
[os.path.join(os.path.abspath(''), './examples/sample_3.jpg')]
]
description = """
Try the examples at bottom to get started.
"""
iface = gr.Interface(
fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Textbox(),
title=title,
examples=examples,
description=description,
cache_examples=True
# examples=examples
)
iface.launch()