Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
import requests | |
from PIL import Image | |
import os | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("ericvo/scribbl-scan-trocr") | |
# load image examples | |
urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU', | |
'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU'] | |
for idx, url in enumerate(urls): | |
image = Image.open(requests.get(url, stream=True).raw) | |
image.save(f"image_{idx}.png") | |
def process_image(image): | |
# prepare image | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
# generate (no beam search) | |
generated_ids = model.generate(pixel_values) | |
# decode | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |
title = "TrOCR - Fine tuned on IAM Dataset" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>" | |
#css = """.output_image, .input_image {height: 600px !important}""" | |
examples = [ | |
[os.path.join(os.path.abspath(''), './examples/sample_1.jpg')], | |
[os.path.join(os.path.abspath(''), './examples/sample_2.jpg')], | |
[os.path.join(os.path.abspath(''), './examples/sample_3.jpg')] | |
] | |
description = """ | |
Try the examples at bottom to get started. | |
""" | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Textbox(), | |
title=title, | |
examples=examples, | |
description=description, | |
cache_examples=True | |
# examples=examples | |
) | |
iface.launch() |