Spaces:
Sleeping
Sleeping
table functionality
Browse files- app.py +237 -60
- requirements.txt +3 -1
- test.csv +0 -0
app.py
CHANGED
@@ -5,22 +5,126 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
5 |
import os
|
6 |
import torch
|
7 |
import numpy as np
|
8 |
-
|
|
|
9 |
|
|
|
10 |
|
11 |
|
12 |
st.title("Sentiment Analysis App")
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
form = st.form(key='Sentiment Analysis')
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
tweet = form.text_input(label='Enter text to analyze:', value="\"We've seen in the last few months, unprecedented amounts of Voter Fraud.\" @SenTedCruz True!")
|
23 |
submit = form.form_submit_button(label='Submit')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
if submit and tweet:
|
26 |
with st.spinner('Analyzing...'):
|
@@ -32,11 +136,11 @@ if submit and tweet:
|
|
32 |
else:
|
33 |
col1, col2, col3, col4, col5 = st.columns(5)
|
34 |
if box == 'bertweet-base-sentiment-analysis':
|
35 |
-
|
36 |
elif box == 'twitter-roberta-base-sentiment':
|
37 |
-
|
38 |
elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
|
39 |
-
|
40 |
|
41 |
|
42 |
# <--- Unecessary Testing --->
|
@@ -53,8 +157,8 @@ if submit and tweet:
|
|
53 |
predictions = np.zeros(probs.shape)
|
54 |
predictions[np.where(probs >= 0.5)] = 1
|
55 |
# turn predicted id's into actual label names
|
56 |
-
id2label = {idx: label for idx, label in enumerate(labels)}
|
57 |
-
predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
|
58 |
print(predicted_labels)
|
59 |
print(predictions[0])
|
60 |
else:
|
@@ -64,60 +168,133 @@ if submit and tweet:
|
|
64 |
encoding = {k: v.to(model.device) for k,v in encoding.items()}
|
65 |
predictions = model(**encoding)
|
66 |
print(predictions)
|
67 |
-
|
68 |
-
|
69 |
-
predictions = pipeline(tweet)
|
70 |
col2.header("Judgement")
|
71 |
else:
|
72 |
-
col2.header("
|
73 |
col4.header("Toxicity Type")
|
74 |
col5.header("Probability")
|
75 |
-
print(predictions)
|
76 |
|
77 |
col1.header("Tweet")
|
78 |
col3.header("Probability")
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
else:
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
else:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
col4.error(labels[_max])
|
123 |
-
col5.error(f"{round(probs[_max] * 100, 1)}%")
|
|
|
5 |
import os
|
6 |
import torch
|
7 |
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
|
11 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = "True"
|
12 |
|
13 |
|
14 |
st.title("Sentiment Analysis App")
|
15 |
+
if 'logs' not in st.session_state:
|
16 |
+
st.session_state.logs = dict()
|
17 |
+
if 'labels' not in st.session_state:
|
18 |
+
st.session_state.labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
|
19 |
+
if 'id2label' not in st.session_state:
|
20 |
+
st.session_state.id2label = {idx: label for idx, label in enumerate(st.session_state.labels)}
|
21 |
+
if 'filled' not in st.session_state:
|
22 |
+
st.session_state.filled = False
|
23 |
|
24 |
form = st.form(key='Sentiment Analysis')
|
25 |
+
st.session_state.options = ['bertweet-base-sentiment-analysis',
|
26 |
+
'distilbert-base-uncased-finetuned-sst-2-english',
|
27 |
+
'twitter-roberta-base-sentiment',
|
28 |
+
# 'Modified Bert Toxicity Classification'
|
29 |
+
]
|
30 |
+
box = form.selectbox('Select Pre-trained Model:', st.session_state.options, key=1)
|
31 |
tweet = form.text_input(label='Enter text to analyze:', value="\"We've seen in the last few months, unprecedented amounts of Voter Fraud.\" @SenTedCruz True!")
|
32 |
submit = form.form_submit_button(label='Submit')
|
33 |
+
if 'df' not in st.session_state:
|
34 |
+
st.session_state.df = pd.read_csv("test.csv")
|
35 |
+
|
36 |
+
if not st.session_state.filled:
|
37 |
+
for s in st.session_state.options:
|
38 |
+
st.session_state.logs[s] = []
|
39 |
+
if not st.session_state.filled:
|
40 |
+
st.session_state.filled = True
|
41 |
+
for x in range(10):
|
42 |
+
print(x)
|
43 |
+
text = st.session_state.df["comment_text"].iloc[x][:128]
|
44 |
+
for s in st.session_state.options:
|
45 |
+
if s == 'bertweet-base-sentiment-analysis':
|
46 |
+
pline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
|
47 |
+
elif s == 'twitter-roberta-base-sentiment':
|
48 |
+
pline = pipeline(task="sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
49 |
+
elif s == 'distilbert-base-uncased-finetuned-sst-2-english':
|
50 |
+
pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
51 |
+
else:
|
52 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
53 |
+
model.eval()
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
55 |
+
encoding = tokenizer(tweet, return_tensors="pt")
|
56 |
+
encoding = {k: v.to(model.device) for k,v in encoding.items()}
|
57 |
+
predictions = model(**encoding)
|
58 |
+
logits = predictions.logits
|
59 |
+
sigmoid = torch.nn.Sigmoid()
|
60 |
+
probs = sigmoid(logits.squeeze().cpu())
|
61 |
+
predictions = np.zeros(probs.shape)
|
62 |
+
predictions[np.where(probs >= 0.5)] = 1
|
63 |
+
predicted_labels = [st.session_state.id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
|
64 |
+
log = []
|
65 |
+
if pline:
|
66 |
+
predictions = pline(text)
|
67 |
+
log = [0] * 4
|
68 |
+
log[1] = text
|
69 |
+
for p in predictions:
|
70 |
+
if s == 'bertweet-base-sentiment-analysis':
|
71 |
+
if p['label'] == "POS":
|
72 |
+
log[0] = 0
|
73 |
+
log[2] = "POSITIVE"
|
74 |
+
log[3] = f"{ round(p['score'] * 100, 1)}%"
|
75 |
+
elif p['label'] == "NEU":
|
76 |
+
log[0] = 2
|
77 |
+
log[2] = f"{ p['label'] }"
|
78 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
79 |
+
else:
|
80 |
+
log[2] = "NEG"
|
81 |
+
log[0] = 1
|
82 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
83 |
+
elif s == 'distilbert-base-uncased-finetuned-sst-2-english':
|
84 |
+
if p['label'] == "POSITIVE":
|
85 |
+
log[0] = 0
|
86 |
+
log[2] = "POSITIVE"
|
87 |
+
log[3] = (f"{round(p['score'] * 100, 1)}%")
|
88 |
+
else:
|
89 |
+
log[2] = ("NEGATIVE")
|
90 |
+
log[0] = 1
|
91 |
+
log[3] = (f"{round(p['score'] * 100, 1)}%")
|
92 |
+
elif s == 'twitter-roberta-base-sentiment':
|
93 |
+
if p['label'] == "LABEL_2":
|
94 |
+
log[0] = 0
|
95 |
+
log[2] = ("POSITIVE")
|
96 |
+
log[3] = (f"{round(p['score'] * 100, 1)}%")
|
97 |
+
elif p['label'] == "LABEL_0":
|
98 |
+
log[0] = 1
|
99 |
+
log[2] = ("NEGATIVE")
|
100 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
101 |
+
else:
|
102 |
+
log[0] = 2
|
103 |
+
log[2] = "NEUTRAL"
|
104 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
105 |
+
else:
|
106 |
+
log = [0] * 6
|
107 |
+
log[1] = text
|
108 |
+
if max(predictions) == 0:
|
109 |
+
log[0] = 0
|
110 |
+
log[2] = ("NO TOXICITY")
|
111 |
+
log[3] = (f"{100 - round(probs[0] * 100, 1)}%")
|
112 |
+
log[4] = ("N/A")
|
113 |
+
log[5] = ("N/A")
|
114 |
+
else:
|
115 |
+
log[0] = 1
|
116 |
+
_max = 0
|
117 |
+
_max2 = 2
|
118 |
+
for i in range(1, len(predictions)):
|
119 |
+
if probs[i] > probs[_max]:
|
120 |
+
_max = i
|
121 |
+
if i > 2 and probs[i] > probs[_max2]:
|
122 |
+
_max2 = i
|
123 |
+
log[2] = (st.session_state.labels[_max])
|
124 |
+
log[3] = (f"{round(probs[_max] * 100, 1)}%")
|
125 |
+
log[4] = (st.session_state.labels[_max2])
|
126 |
+
log[5] = (f"{round(probs[_max2] * 100, 1)}%")
|
127 |
+
st.session_state.logs[s].append(log)
|
128 |
|
129 |
if submit and tweet:
|
130 |
with st.spinner('Analyzing...'):
|
|
|
136 |
else:
|
137 |
col1, col2, col3, col4, col5 = st.columns(5)
|
138 |
if box == 'bertweet-base-sentiment-analysis':
|
139 |
+
pline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
|
140 |
elif box == 'twitter-roberta-base-sentiment':
|
141 |
+
pline = pipeline(task="sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
142 |
elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
|
143 |
+
pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
144 |
|
145 |
|
146 |
# <--- Unecessary Testing --->
|
|
|
157 |
predictions = np.zeros(probs.shape)
|
158 |
predictions[np.where(probs >= 0.5)] = 1
|
159 |
# turn predicted id's into actual label names
|
160 |
+
st.session_state.id2label = {idx: label for idx, label in enumerate(st.session_state.labels)}
|
161 |
+
predicted_labels = [st.session_state.id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
|
162 |
print(predicted_labels)
|
163 |
print(predictions[0])
|
164 |
else:
|
|
|
168 |
encoding = {k: v.to(model.device) for k,v in encoding.items()}
|
169 |
predictions = model(**encoding)
|
170 |
print(predictions)
|
171 |
+
if pline:
|
172 |
+
predictions = pline(tweet)
|
|
|
173 |
col2.header("Judgement")
|
174 |
else:
|
175 |
+
col2.header("")
|
176 |
col4.header("Toxicity Type")
|
177 |
col5.header("Probability")
|
|
|
178 |
|
179 |
col1.header("Tweet")
|
180 |
col3.header("Probability")
|
181 |
|
182 |
+
if pline:
|
183 |
+
log = [0] * 4
|
184 |
+
log[1] = tweet
|
185 |
+
for p in predictions:
|
186 |
+
if box == 'bertweet-base-sentiment-analysis':
|
187 |
+
if p['label'] == "POS":
|
188 |
+
col1.success(tweet.split("\n")[0][:20])
|
189 |
+
log[0] = 0
|
190 |
+
col2.success("POS")
|
191 |
+
col3.success(f"{ round(p['score'] * 100, 1)}%")
|
192 |
+
log[2] = ("POS")
|
193 |
+
log[3] = (f"{ round(p['score'] * 100, 1)}%")
|
194 |
+
elif p['label'] == "NEU":
|
195 |
+
col1.warning(tweet.split("\n")[0][:20])
|
196 |
+
log[0] = 2
|
197 |
+
col2.warning(f"{ p['label'] }")
|
198 |
+
col3.warning(f"{round(p['score'] * 100, 1)}%")
|
199 |
+
log[2] = ("NEU")
|
200 |
+
log[3] = (f"{round(p['score'] * 100, 1)}%")
|
201 |
+
else:
|
202 |
+
log[0] = 1
|
203 |
+
col1.error(tweet.split("\n")[0][:20])
|
204 |
+
col2.error("NEG")
|
205 |
+
col3.error(f"{round(p['score'] * 100, 1)}%")
|
206 |
+
log[2] = ("NEG")
|
207 |
+
log[3] = (f"{round(p['score'] * 100, 1)}%")
|
208 |
+
elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
|
209 |
+
if p['label'] == "POSITIVE":
|
210 |
+
col1.success(tweet.split("\n")[0][:20])
|
211 |
+
log[0] = 0
|
212 |
+
col2.success("POSITIVE")
|
213 |
+
log[2] = "POSITIVE"
|
214 |
+
col3.success(f"{round(p['score'] * 100, 1)}%")
|
215 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
216 |
+
else:
|
217 |
+
col2.error("NEGATIVE")
|
218 |
+
col1.error(tweet.split("\n")[0][:20])
|
219 |
+
log[2] = ("NEGATIVE")
|
220 |
+
log[0] = 1
|
221 |
+
col3.error(f"{round(p['score'] * 100, 1)}%")
|
222 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
223 |
+
elif box == 'twitter-roberta-base-sentiment':
|
224 |
+
if p['label'] == "LABEL_2":
|
225 |
+
log[0] = 0
|
226 |
+
col1.success(tweet.split("\n")[0][:20])
|
227 |
+
col2.success("POSITIVE")
|
228 |
+
col3.success(f"{round(p['score'] * 100, 1)}%")
|
229 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
230 |
+
log[2] = "POSITIVE"
|
231 |
+
elif p['label'] == "LABEL_0":
|
232 |
+
log[0] = 1
|
233 |
+
col1.error(tweet.split("\n")[0][:20])
|
234 |
+
col2.error("NEGATIVE")
|
235 |
+
col3.error(f"{round(p['score'] * 100, 1)}%")
|
236 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
237 |
+
log[2] = "NEGATIVE"
|
238 |
+
else:
|
239 |
+
log[0] = 2
|
240 |
+
col1.warning(tweet.split("\n")[0][:20])
|
241 |
+
col2.warning("NEUTRAL")
|
242 |
+
col3.warning(f"{round(p['score'] * 100, 1)}%")
|
243 |
+
log[3] = f"{round(p['score'] * 100, 1)}%"
|
244 |
+
log[2] = "NEUTRAL"
|
245 |
+
for a in st.session_state.logs[box][::-1]:
|
246 |
+
if a[0] == 0:
|
247 |
+
col1.success(a[1].split("\n")[0][:20])
|
248 |
+
col2.success(a[2])
|
249 |
+
col3.success(a[3])
|
250 |
+
elif a[0] == 1:
|
251 |
+
col1.error(a[1].split("\n")[0][:20])
|
252 |
+
col2.error(a[2])
|
253 |
+
col3.error(a[3])
|
254 |
+
else:
|
255 |
+
col1.warning(a[1].split("\n")[0][:20])
|
256 |
+
col2.warning(a[2])
|
257 |
+
col3.warning(a[3])
|
258 |
+
st.session_state.logs[box].append(log)
|
259 |
+
else:
|
260 |
+
log = [0] * 6
|
261 |
+
log[1] = tweet
|
262 |
+
if max(predictions) == 0:
|
263 |
+
col1.success(tweet.split("\n")[0][:20])
|
264 |
+
col2.success("NO TOXICITY")
|
265 |
+
col3.success(f"{100 - round(probs[0] * 100, 1)}%")
|
266 |
+
col4.success("N/A")
|
267 |
+
col5.success("N/A")
|
268 |
else:
|
269 |
+
_max = 0
|
270 |
+
_max2 = 2
|
271 |
+
for i in range(1, len(predictions)):
|
272 |
+
if probs[i] > probs[_max]:
|
273 |
+
_max = i
|
274 |
+
if i > 2 and probs[i] > probs[_max2]:
|
275 |
+
_max2 = i
|
276 |
+
col1.error(tweet.split("\n")[0][:20])
|
277 |
+
col2.error(st.session_state.labels[_max])
|
278 |
+
col3.error(f"{round(probs[_max] * 100, 1)}%")
|
279 |
+
col4.error(st.session_state.labels[_max2])
|
280 |
+
col5.error(f"{round(probs[_max2] * 100, 1)}%")
|
281 |
+
for a in st.session_state.logs[box][::-1]:
|
282 |
+
if a[0] == 0:
|
283 |
+
col1.success(a[1].split("\n")[0][:20])
|
284 |
+
col2.success(a[2])
|
285 |
+
col3.success(a[3])
|
286 |
+
col4.success(a[4])
|
287 |
+
col5.success(a[5])
|
288 |
+
elif a[0] == 1:
|
289 |
+
col1.error(a[1].split("\n")[0][:20])
|
290 |
+
col2.error(a[2])
|
291 |
+
col3.error(a[3])
|
292 |
+
col4.error(a[4])
|
293 |
+
col5.error(a[5])
|
294 |
else:
|
295 |
+
col1.warning(a[1].split("\n")[0][:20])
|
296 |
+
col2.warning(a[2])
|
297 |
+
col3.warning(a[3])
|
298 |
+
col4.warning(a[4])
|
299 |
+
col5.warning(a[5])
|
300 |
+
st.session_state.logs[box].append(log)
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
torch
|
2 |
streamlit
|
3 |
-
transformers
|
|
|
|
|
|
1 |
torch
|
2 |
streamlit
|
3 |
+
transformers
|
4 |
+
numpy
|
5 |
+
pandas
|
test.csv
ADDED
Binary file (60.4 MB). View file
|
|