Spaces:
Sleeping
Sleeping
everything
Browse files- app.py +63 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
from transformers import pipeline
|
4 |
+
import os
|
5 |
+
|
6 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = "True"
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
st.title("Sentiment Analysis App")
|
11 |
+
|
12 |
+
form = st.form(key='Sentiment Analysis')
|
13 |
+
box = form.selectbox('Select Pre-trained Model:', ['bertweet-base-sentiment-analysis',
|
14 |
+
'distilbert-base-uncased-finetuned-sst-2-english',
|
15 |
+
'twitter-roberta-base-sentiment'
|
16 |
+
], key=1)
|
17 |
+
tweet = form.text_input(label='Enter text to analyze:', value="\"We've seen in the last few months, unprecedented amounts of Voter Fraud.\" @SenTedCruz True!")
|
18 |
+
submit = form.form_submit_button(label='Submit')
|
19 |
+
|
20 |
+
if submit and tweet:
|
21 |
+
with st.spinner('Analyzing...'):
|
22 |
+
time.sleep(1)
|
23 |
+
# st.header(tweet)
|
24 |
+
|
25 |
+
if tweet is not None:
|
26 |
+
col1, col2, col3 = st.columns(3)
|
27 |
+
if box == 'bertweet-base-sentiment-analysis':
|
28 |
+
pipeline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
|
29 |
+
elif box == 'twitter-xlm-roberta-base-sentiment':
|
30 |
+
pipeline = pipeline(task="sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
31 |
+
else:
|
32 |
+
pipeline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
33 |
+
predictions = pipeline(tweet)
|
34 |
+
print(predictions)
|
35 |
+
col1.header("Tweet")
|
36 |
+
col1.subheader(tweet)
|
37 |
+
col2.header("Judgement")
|
38 |
+
col3.header("Probability")
|
39 |
+
for p in predictions:
|
40 |
+
if box == 'bertweet-base-sentiment-analysis':
|
41 |
+
if p['label'] == "POS":
|
42 |
+
col2.success(f"{ p['label'] }")
|
43 |
+
col3.success(f"{ round(p['score'] * 100, 1)}%")
|
44 |
+
elif p['label'] == "NEU":
|
45 |
+
col2.warning(f"{ p['label'] }")
|
46 |
+
col3.warning(f"{round(p['score'] * 100, 1)}%")
|
47 |
+
else:
|
48 |
+
col2.error(f"{p['label']}")
|
49 |
+
col3.error(f"{round(p['score'] * 100, 1)}%")
|
50 |
+
elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
|
51 |
+
if p['label'] == "POSITIVE":
|
52 |
+
col2.success(f"{p['label']}")
|
53 |
+
col3.success(f"{round(p['score'] * 100, 1)}%")
|
54 |
+
else:
|
55 |
+
col2.error(f"{p['label']}")
|
56 |
+
col3.error(f"{round(p['score'] * 100, 1)}%")
|
57 |
+
else:
|
58 |
+
if p['label'] == "POSITIVE":
|
59 |
+
col2.success(f"{p['label']}")
|
60 |
+
col3.success(f"{round(p['score'] * 100, 1)}%")
|
61 |
+
else:
|
62 |
+
col2.error(f"{p['label']}")
|
63 |
+
col3.error(f"{round(p['score'] * 100, 1)}%")
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|