Spaces:
Sleeping
Sleeping
document_app
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import time
|
3 |
from transformers import pipeline
|
@@ -7,52 +8,132 @@ import torch
|
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
|
10 |
-
|
11 |
os.environ['KMP_DUPLICATE_LIB_OK'] = "True"
|
12 |
|
13 |
-
|
14 |
st.title("Sentiment Analysis App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if 'logs' not in st.session_state:
|
16 |
st.session_state.logs = dict()
|
|
|
|
|
17 |
if 'labels' not in st.session_state:
|
18 |
st.session_state.labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
|
19 |
-
|
20 |
-
|
21 |
if 'filled' not in st.session_state:
|
22 |
st.session_state.filled = False
|
|
|
|
|
|
|
23 |
if 'model' not in st.session_state:
|
24 |
st.session_state.model = AutoModelForSequenceClassification.from_pretrained("Ptato/Modified-Bert-Toxicity-Classification")
|
25 |
st.session_state.model.eval()
|
|
|
|
|
|
|
|
|
|
|
26 |
if 'tokenizer' not in st.session_state:
|
27 |
st.session_state.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
28 |
|
|
|
|
|
29 |
form = st.form(key='Sentiment Analysis')
|
|
|
|
|
30 |
st.session_state.options = [
|
31 |
'bertweet-base-sentiment-analysis',
|
32 |
'distilbert-base-uncased-finetuned-sst-2-english',
|
33 |
'twitter-roberta-base-sentiment',
|
34 |
'Modified Bert Toxicity Classification'
|
35 |
]
|
|
|
|
|
36 |
box = form.selectbox('Select Pre-trained Model:', st.session_state.options, key=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
tweet = form.text_input(label='Enter text to analyze:', value="\"We've seen in the last few months, unprecedented amounts of Voter Fraud.\" @SenTedCruz True!")
|
|
|
|
|
38 |
submit = form.form_submit_button(label='Submit')
|
|
|
|
|
39 |
if 'df' not in st.session_state:
|
40 |
st.session_state.df = pd.read_csv("test.csv")
|
41 |
|
|
|
42 |
if not st.session_state.filled:
|
|
|
43 |
for s in st.session_state.options:
|
44 |
st.session_state.logs[s] = []
|
|
|
|
|
45 |
if not st.session_state.filled:
|
|
|
|
|
46 |
st.session_state.filled = True
|
|
|
|
|
47 |
for x in range(10):
|
|
|
|
|
48 |
print(x)
|
|
|
|
|
49 |
text = st.session_state.df["comment_text"].iloc[x][:128]
|
|
|
|
|
50 |
for s in st.session_state.options:
|
|
|
|
|
|
|
|
|
51 |
pline = None
|
|
|
|
|
52 |
predictions = None
|
|
|
|
|
53 |
encoding = None
|
|
|
|
|
54 |
logits = None
|
55 |
probs = None
|
|
|
|
|
56 |
if s == 'bertweet-base-sentiment-analysis':
|
57 |
pline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
|
58 |
elif s == 'twitter-roberta-base-sentiment':
|
@@ -60,25 +141,45 @@ if not st.session_state.filled:
|
|
60 |
elif s == 'distilbert-base-uncased-finetuned-sst-2-english':
|
61 |
pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
62 |
else:
|
|
|
63 |
encoding = st.session_state.tokenizer(text, return_tensors="pt")
|
64 |
encoding = {k: v.to(st.session_state.model.device) for k, v in encoding.items()}
|
|
|
|
|
65 |
predictions = st.session_state.model(**encoding)
|
|
|
|
|
66 |
logits = predictions.logits
|
67 |
sigmoid = torch.nn.Sigmoid()
|
68 |
probs = sigmoid(logits.squeeze().cpu())
|
|
|
|
|
69 |
predictions = np.zeros(probs.shape)
|
70 |
predictions[np.where(probs >= 0.5)] = 1
|
71 |
-
|
|
|
72 |
log = []
|
|
|
|
|
73 |
if pline:
|
|
|
74 |
predictions = pline(text)
|
|
|
|
|
75 |
log = [0] * 4
|
|
|
|
|
76 |
log[1] = text
|
|
|
|
|
77 |
for p in predictions:
|
|
|
|
|
|
|
78 |
if s == 'bertweet-base-sentiment-analysis':
|
79 |
if p['label'] == "POS":
|
80 |
log[0] = 0
|
81 |
-
log[2] = "
|
82 |
log[3] = f"{ round(p['score'] * 100, 1)}%"
|
83 |
elif p['label'] == "NEU":
|
84 |
log[0] = 2
|
@@ -110,17 +211,29 @@ if not st.session_state.filled:
|
|
110 |
log[0] = 2
|
111 |
log[2] = "NEUTRAL"
|
112 |
log[3] = f"{round(p['score'] * 100, 1)}%"
|
|
|
|
|
113 |
else:
|
|
|
|
|
114 |
log = [0] * 6
|
115 |
log[1] = text
|
|
|
|
|
116 |
if max(predictions) == 0:
|
|
|
117 |
log[0] = 0
|
118 |
log[2] = ("NO TOXICITY")
|
119 |
log[3] = (f"{100 - round(probs[0].item() * 100, 1)}%")
|
120 |
log[4] = ("N/A")
|
121 |
log[5] = ("N/A")
|
|
|
|
|
122 |
else:
|
|
|
123 |
log[0] = 1
|
|
|
|
|
124 |
_max = 0
|
125 |
_max2 = 2
|
126 |
for i in range(1, len(predictions)):
|
@@ -128,22 +241,36 @@ if not st.session_state.filled:
|
|
128 |
_max = i
|
129 |
if i > 2 and probs[i].item() > probs[_max2].item():
|
130 |
_max2 = i
|
|
|
|
|
131 |
log[2] = (st.session_state.labels[_max])
|
132 |
log[3] = (f"{round(probs[_max].item() * 100, 1)}%")
|
133 |
log[4] = (st.session_state.labels[_max2])
|
134 |
log[5] = (f"{round(probs[_max2].item() * 100, 1)}%")
|
|
|
135 |
st.session_state.logs[s].append(log)
|
136 |
|
|
|
137 |
if submit and tweet:
|
|
|
|
|
138 |
with st.spinner('Analyzing...'):
|
139 |
time.sleep(1)
|
140 |
|
|
|
141 |
if tweet is not None:
|
|
|
|
|
142 |
pline = None
|
|
|
|
|
|
|
143 |
if box != 'Modified Bert Toxicity Classification':
|
144 |
col1, col2, col3 = st.columns(3)
|
145 |
else:
|
146 |
col1, col2, col3, col4, col5 = st.columns(5)
|
|
|
|
|
147 |
if box == 'bertweet-base-sentiment-analysis':
|
148 |
pline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
|
149 |
elif box == 'twitter-roberta-base-sentiment':
|
@@ -151,33 +278,60 @@ if submit and tweet:
|
|
151 |
elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
|
152 |
pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
153 |
else:
|
|
|
|
|
154 |
encoding = st.session_state.tokenizer(tweet, return_tensors="pt")
|
155 |
encoding = {k: v.to(st.session_state.model.device) for k,v in encoding.items()}
|
|
|
|
|
156 |
predictions = st.session_state.model(**encoding)
|
|
|
|
|
157 |
logits = predictions.logits
|
158 |
sigmoid = torch.nn.Sigmoid()
|
159 |
probs = sigmoid(logits.squeeze().cpu())
|
160 |
-
|
|
|
161 |
predictions = np.zeros(probs.shape)
|
162 |
predictions[np.where(probs >= 0.5)] = 1
|
163 |
-
|
|
|
|
|
164 |
if pline:
|
|
|
|
|
165 |
predictions = pline(tweet)
|
|
|
|
|
166 |
col2.header("Judgement")
|
167 |
else:
|
|
|
168 |
col2.header("Category")
|
169 |
col4.header("Type")
|
170 |
col5.header("Score")
|
171 |
|
|
|
172 |
col1.header("Tweet")
|
173 |
col3.header("Score")
|
174 |
|
|
|
175 |
if pline:
|
|
|
176 |
log = [0] * 4
|
|
|
|
|
177 |
log[1] = tweet
|
|
|
|
|
178 |
for p in predictions:
|
|
|
|
|
|
|
179 |
if box == 'bertweet-base-sentiment-analysis':
|
180 |
if p['label'] == "POS":
|
|
|
|
|
|
|
181 |
col1.success(tweet.split("\n")[0][:20])
|
182 |
log[0] = 0
|
183 |
col2.success("POS")
|
@@ -235,8 +389,11 @@ if submit and tweet:
|
|
235 |
col3.warning(f"{round(p['score'] * 100, 1)}%")
|
236 |
log[3] = f"{round(p['score'] * 100, 1)}%"
|
237 |
log[2] = "NEUTRAL"
|
|
|
|
|
238 |
for a in st.session_state.logs[box][::-1]:
|
239 |
if a[0] == 0:
|
|
|
240 |
col1.success(a[1].split("\n")[0][:20])
|
241 |
col2.success(a[2])
|
242 |
col3.success(a[3])
|
@@ -248,11 +405,21 @@ if submit and tweet:
|
|
248 |
col1.warning(a[1].split("\n")[0][:20])
|
249 |
col2.warning(a[2])
|
250 |
col3.warning(a[3])
|
|
|
251 |
st.session_state.logs[box].append(log)
|
|
|
|
|
252 |
else:
|
|
|
|
|
253 |
log = [0] * 6
|
254 |
log[1] = tweet
|
|
|
|
|
255 |
if max(predictions) == 0:
|
|
|
|
|
|
|
256 |
col1.success(tweet.split("\n")[0][:10])
|
257 |
col2.success("NO TOXICITY")
|
258 |
col3.success(f"{100 - round(probs[0].item() * 100, 1)}%")
|
@@ -264,6 +431,8 @@ if submit and tweet:
|
|
264 |
log[4] = ("N/A")
|
265 |
log[5] = ("N/A")
|
266 |
else:
|
|
|
|
|
267 |
_max = 0
|
268 |
_max2 = 2
|
269 |
for i in range(1, len(predictions)):
|
@@ -271,6 +440,8 @@ if submit and tweet:
|
|
271 |
_max = i
|
272 |
if i > 2 and probs[i].item() > probs[_max2].item():
|
273 |
_max2 = i
|
|
|
|
|
274 |
col1.error(tweet.split("\n")[0][:10])
|
275 |
col2.error(st.session_state.labels[_max])
|
276 |
col3.error(f"{round(probs[_max].item() * 100, 1)}%")
|
@@ -281,6 +452,8 @@ if submit and tweet:
|
|
281 |
log[3] = (f"{round(probs[_max].item() * 100, 1)}%")
|
282 |
log[4] = (st.session_state.labels[_max2])
|
283 |
log[5] = (f"{round(probs[_max2].item() * 100, 1)}%")
|
|
|
|
|
284 |
for a in st.session_state.logs[box][::-1]:
|
285 |
if a[0] == 0:
|
286 |
col1.success(a[1].split("\n")[0][:10])
|
@@ -300,4 +473,6 @@ if submit and tweet:
|
|
300 |
col3.warning(a[3])
|
301 |
col4.warning(a[4])
|
302 |
col5.warning(a[5])
|
|
|
|
|
303 |
st.session_state.logs[box].append(log)
|
|
|
1 |
+
# Import stuff
|
2 |
import streamlit as st
|
3 |
import time
|
4 |
from transformers import pipeline
|
|
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
|
11 |
+
# Mitigates an error on Macs
|
12 |
os.environ['KMP_DUPLICATE_LIB_OK'] = "True"
|
13 |
|
14 |
+
# Set the titel
|
15 |
st.title("Sentiment Analysis App")
|
16 |
+
|
17 |
+
# Set the variables that should not be changed between refreshes of the app.
|
18 |
+
|
19 |
+
"""
|
20 |
+
logs is a map that records the results of past sentiment analysis queries.
|
21 |
+
Type: dict() {"key" --> value[]}
|
22 |
+
key: model_name (string) - The name of the model being used
|
23 |
+
value: log[] (list) - The list of values that represent the model's results
|
24 |
+
--> For the pretrained labels, len(log) = 4
|
25 |
+
--> log[0] (int) - The prediction of the model on its input
|
26 |
+
--> 0 = Positive
|
27 |
+
--> 1 = Negative
|
28 |
+
--> 2 = Neutral (if applicable)
|
29 |
+
--> log[1] (string) - The tweet/inputted string
|
30 |
+
--> log[2] (string) - The judgement of the tweet/input (Positive/Neutral/Negative)
|
31 |
+
--> log[3] (string) - The score of the prediction (includes '%' sign)
|
32 |
+
--> For the finetuned model, len(log) = 6
|
33 |
+
--> log[0] (int) - The prediction of the model on the toxicity of the input
|
34 |
+
--> 0 = Nontoxic
|
35 |
+
--> 1 = Toxic
|
36 |
+
--> log[1] (string) - The tweet/inputted string
|
37 |
+
--> log[2] (string) - The highest scoring overall category of toxicity out of:
|
38 |
+
'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', and 'identity_hate'
|
39 |
+
--> log[3] (string) - The score of log[2] (includes '%' sign)
|
40 |
+
--> log[4] (string) - The predicted type of toxicity, the highest scoring category of toxicity out of:
|
41 |
+
'obscene', 'threat', 'insult', and 'identity_hate'
|
42 |
+
--> log[5] (string) - The score of log[4] (includes '%' sign)
|
43 |
+
"""
|
44 |
if 'logs' not in st.session_state:
|
45 |
st.session_state.logs = dict()
|
46 |
+
|
47 |
+
# labels is a list of toxicity categories for the finetuned model
|
48 |
if 'labels' not in st.session_state:
|
49 |
st.session_state.labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
|
50 |
+
|
51 |
+
# filled is a boolean that checks whether logs is prepopulated with data.
|
52 |
if 'filled' not in st.session_state:
|
53 |
st.session_state.filled = False
|
54 |
+
|
55 |
+
# model is the finetuned model that I created. It wasn't working well locally on HuggingFace so I uploaded it to HuggingFace as
|
56 |
+
# a pretrained model. I also set it to evaluation mode.
|
57 |
if 'model' not in st.session_state:
|
58 |
st.session_state.model = AutoModelForSequenceClassification.from_pretrained("Ptato/Modified-Bert-Toxicity-Classification")
|
59 |
st.session_state.model.eval()
|
60 |
+
|
61 |
+
|
62 |
+
# tokenizer is the same tokenizer that is used by the "bert-base-uncased" model, which my finetuned model is built off of.
|
63 |
+
# tokenizer is used to input the tweets into my model for prediction.
|
64 |
+
|
65 |
if 'tokenizer' not in st.session_state:
|
66 |
st.session_state.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
67 |
|
68 |
+
|
69 |
+
# This form allows users to select their preferred model for training
|
70 |
form = st.form(key='Sentiment Analysis')
|
71 |
+
|
72 |
+
# st.session_state.options pre-sets the available model choices.
|
73 |
st.session_state.options = [
|
74 |
'bertweet-base-sentiment-analysis',
|
75 |
'distilbert-base-uncased-finetuned-sst-2-english',
|
76 |
'twitter-roberta-base-sentiment',
|
77 |
'Modified Bert Toxicity Classification'
|
78 |
]
|
79 |
+
|
80 |
+
# box is the dropdown box that users use to select their choice of model
|
81 |
box = form.selectbox('Select Pre-trained Model:', st.session_state.options, key=1)
|
82 |
+
|
83 |
+
"""
|
84 |
+
tweet refers to the text box for users to input their tweets.
|
85 |
+
Has a default value of "\"We've seen in the last few months, unprecedented amounts of Voter Fraud.\" @SenTedCruz True!"
|
86 |
+
(Tweeted by former president Donald Trump)
|
87 |
+
"""
|
88 |
tweet = form.text_input(label='Enter text to analyze:', value="\"We've seen in the last few months, unprecedented amounts of Voter Fraud.\" @SenTedCruz True!")
|
89 |
+
|
90 |
+
# Submit button
|
91 |
submit = form.form_submit_button(label='Submit')
|
92 |
+
|
93 |
+
# Read in some test data for prepopulation
|
94 |
if 'df' not in st.session_state:
|
95 |
st.session_state.df = pd.read_csv("test.csv")
|
96 |
|
97 |
+
# Initializes logs if not already initialized
|
98 |
if not st.session_state.filled:
|
99 |
+
# Iterates through all the options, initializing the logs for each.
|
100 |
for s in st.session_state.options:
|
101 |
st.session_state.logs[s] = []
|
102 |
+
|
103 |
+
# Pre-populates logs if not already pre-populated
|
104 |
if not st.session_state.filled:
|
105 |
+
|
106 |
+
# Esnure pre-population happen again
|
107 |
st.session_state.filled = True
|
108 |
+
|
109 |
+
# Initialize 10 entries
|
110 |
for x in range(10):
|
111 |
+
|
112 |
+
# Helps me see which entry is being evaluated on the backend
|
113 |
print(x)
|
114 |
+
|
115 |
+
# Shorten tweets, as some models may not handle longer ones
|
116 |
text = st.session_state.df["comment_text"].iloc[x][:128]
|
117 |
+
|
118 |
+
# Iterate thru the models
|
119 |
for s in st.session_state.options:
|
120 |
+
|
121 |
+
# Reset everything
|
122 |
+
|
123 |
+
# pline is the pipeline, which is used to load in the proper HuggingFace model for analysis
|
124 |
pline = None
|
125 |
+
|
126 |
+
# predictions refer to the predictions made by each model
|
127 |
predictions = None
|
128 |
+
|
129 |
+
# encoding is used by the finetuned model as input
|
130 |
encoding = None
|
131 |
+
|
132 |
+
# logits and probs are used to transform the results from predictions into usable/outputable data
|
133 |
logits = None
|
134 |
probs = None
|
135 |
+
|
136 |
+
# Perform different actions based on the model selected by the user
|
137 |
if s == 'bertweet-base-sentiment-analysis':
|
138 |
pline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
|
139 |
elif s == 'twitter-roberta-base-sentiment':
|
|
|
141 |
elif s == 'distilbert-base-uncased-finetuned-sst-2-english':
|
142 |
pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
143 |
else:
|
144 |
+
# encode data
|
145 |
encoding = st.session_state.tokenizer(text, return_tensors="pt")
|
146 |
encoding = {k: v.to(st.session_state.model.device) for k, v in encoding.items()}
|
147 |
+
|
148 |
+
# feed data into model and store the predictions
|
149 |
predictions = st.session_state.model(**encoding)
|
150 |
+
|
151 |
+
# modify the data to get probabilities for each toxicity (scale of 0 - 1)
|
152 |
logits = predictions.logits
|
153 |
sigmoid = torch.nn.Sigmoid()
|
154 |
probs = sigmoid(logits.squeeze().cpu())
|
155 |
+
|
156 |
+
# Reform the predictions to note where probabilities are actually high
|
157 |
predictions = np.zeros(probs.shape)
|
158 |
predictions[np.where(probs >= 0.5)] = 1
|
159 |
+
|
160 |
+
# Prepare the log entry
|
161 |
log = []
|
162 |
+
|
163 |
+
# If there was a pipeline, then we used a pretrained model.
|
164 |
if pline:
|
165 |
+
# Get the prediction
|
166 |
predictions = pline(text)
|
167 |
+
|
168 |
+
# Initialize the log to the proper shape
|
169 |
log = [0] * 4
|
170 |
+
|
171 |
+
# Record the text
|
172 |
log[1] = text
|
173 |
+
|
174 |
+
# predictions ends up being length 1, so this only happens for the prediction with the highest probability (the returned value)
|
175 |
for p in predictions:
|
176 |
+
|
177 |
+
# Different models have different outputs, so we standardize them in the logs
|
178 |
+
# Note, some unecessary repetions may occur here
|
179 |
if s == 'bertweet-base-sentiment-analysis':
|
180 |
if p['label'] == "POS":
|
181 |
log[0] = 0
|
182 |
+
log[2] = "POS"
|
183 |
log[3] = f"{ round(p['score'] * 100, 1)}%"
|
184 |
elif p['label'] == "NEU":
|
185 |
log[0] = 2
|
|
|
211 |
log[0] = 2
|
212 |
log[2] = "NEUTRAL"
|
213 |
log[3] = f"{round(p['score'] * 100, 1)}%"
|
214 |
+
|
215 |
+
# Otherwise, we are using the finetuned model
|
216 |
else:
|
217 |
+
|
218 |
+
#Initialize log to the proper shape and store the text
|
219 |
log = [0] * 6
|
220 |
log[1] = text
|
221 |
+
|
222 |
+
# Determine whether or not there was toxicity
|
223 |
if max(predictions) == 0:
|
224 |
+
# No toxicity, input log values as such
|
225 |
log[0] = 0
|
226 |
log[2] = ("NO TOXICITY")
|
227 |
log[3] = (f"{100 - round(probs[0].item() * 100, 1)}%")
|
228 |
log[4] = ("N/A")
|
229 |
log[5] = ("N/A")
|
230 |
+
|
231 |
+
# There was toxicity
|
232 |
else:
|
233 |
+
# Record the toxicity
|
234 |
log[0] = 1
|
235 |
+
|
236 |
+
# Find the maximum overall toxic category and the maximum toxic category of each type
|
237 |
_max = 0
|
238 |
_max2 = 2
|
239 |
for i in range(1, len(predictions)):
|
|
|
241 |
_max = i
|
242 |
if i > 2 and probs[i].item() > probs[_max2].item():
|
243 |
_max2 = i
|
244 |
+
|
245 |
+
# Input data into log
|
246 |
log[2] = (st.session_state.labels[_max])
|
247 |
log[3] = (f"{round(probs[_max].item() * 100, 1)}%")
|
248 |
log[4] = (st.session_state.labels[_max2])
|
249 |
log[5] = (f"{round(probs[_max2].item() * 100, 1)}%")
|
250 |
+
# Add the log to the proper model's logs
|
251 |
st.session_state.logs[s].append(log)
|
252 |
|
253 |
+
# Check if there was a submitted input
|
254 |
if submit and tweet:
|
255 |
+
|
256 |
+
# Small loading message :)
|
257 |
with st.spinner('Analyzing...'):
|
258 |
time.sleep(1)
|
259 |
|
260 |
+
# Double check that there was an input
|
261 |
if tweet is not None:
|
262 |
+
|
263 |
+
# Reset variable
|
264 |
pline = None
|
265 |
+
|
266 |
+
# Set up shape for output
|
267 |
+
# Pretrained models should have 3 columns, while the finetuned model should have 5
|
268 |
if box != 'Modified Bert Toxicity Classification':
|
269 |
col1, col2, col3 = st.columns(3)
|
270 |
else:
|
271 |
col1, col2, col3, col4, col5 = st.columns(5)
|
272 |
+
|
273 |
+
# Perform different actions based on the model selected by the user
|
274 |
if box == 'bertweet-base-sentiment-analysis':
|
275 |
pline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
|
276 |
elif box == 'twitter-roberta-base-sentiment':
|
|
|
278 |
elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
|
279 |
pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
280 |
else:
|
281 |
+
|
282 |
+
# encode data
|
283 |
encoding = st.session_state.tokenizer(tweet, return_tensors="pt")
|
284 |
encoding = {k: v.to(st.session_state.model.device) for k,v in encoding.items()}
|
285 |
+
|
286 |
+
# feed data into model and store the predictions
|
287 |
predictions = st.session_state.model(**encoding)
|
288 |
+
|
289 |
+
# modify the data to get probabilities for each toxicity (scale of 0 - 1)
|
290 |
logits = predictions.logits
|
291 |
sigmoid = torch.nn.Sigmoid()
|
292 |
probs = sigmoid(logits.squeeze().cpu())
|
293 |
+
|
294 |
+
# Reform the predictions to note where probabilities are actually high
|
295 |
predictions = np.zeros(probs.shape)
|
296 |
predictions[np.where(probs >= 0.5)] = 1
|
297 |
+
|
298 |
+
# Title columns differently for different models
|
299 |
+
# The existence of pline implies that a pretrained model was used
|
300 |
if pline:
|
301 |
+
|
302 |
+
# Predict the tweet here
|
303 |
predictions = pline(tweet)
|
304 |
+
|
305 |
+
# Title the column
|
306 |
col2.header("Judgement")
|
307 |
else:
|
308 |
+
# Titling columns
|
309 |
col2.header("Category")
|
310 |
col4.header("Type")
|
311 |
col5.header("Score")
|
312 |
|
313 |
+
# Title more columns
|
314 |
col1.header("Tweet")
|
315 |
col3.header("Score")
|
316 |
|
317 |
+
# If we used a pretrained model, process the prediction below
|
318 |
if pline:
|
319 |
+
# Set log to correct shape
|
320 |
log = [0] * 4
|
321 |
+
|
322 |
+
# Store the tweet
|
323 |
log[1] = tweet
|
324 |
+
|
325 |
+
# predictions ends up being length 1, so this only happens for the prediction with the highest probability (the returned value)
|
326 |
for p in predictions:
|
327 |
+
|
328 |
+
# Different models have different outputs, so we standardize them in the logs
|
329 |
+
# Note, some unecessary repetions may occur here
|
330 |
if box == 'bertweet-base-sentiment-analysis':
|
331 |
if p['label'] == "POS":
|
332 |
+
|
333 |
+
# Only print the first 20 characters of the first line, so that the table lines up
|
334 |
+
# Also store the proper values into log while printing the outcome of this tweet
|
335 |
col1.success(tweet.split("\n")[0][:20])
|
336 |
log[0] = 0
|
337 |
col2.success("POS")
|
|
|
389 |
col3.warning(f"{round(p['score'] * 100, 1)}%")
|
390 |
log[3] = f"{round(p['score'] * 100, 1)}%"
|
391 |
log[2] = "NEUTRAL"
|
392 |
+
|
393 |
+
# Print out the past inputs in reverse order
|
394 |
for a in st.session_state.logs[box][::-1]:
|
395 |
if a[0] == 0:
|
396 |
+
# Again, only limit the tweet printed to 20 characters to have everything line up
|
397 |
col1.success(a[1].split("\n")[0][:20])
|
398 |
col2.success(a[2])
|
399 |
col3.success(a[3])
|
|
|
405 |
col1.warning(a[1].split("\n")[0][:20])
|
406 |
col2.warning(a[2])
|
407 |
col3.warning(a[3])
|
408 |
+
# Add the log to the logs
|
409 |
st.session_state.logs[box].append(log)
|
410 |
+
|
411 |
+
# We used the finetuned model, so proceed below
|
412 |
else:
|
413 |
+
|
414 |
+
# Initialize log to the proper shape and store the tweet
|
415 |
log = [0] * 6
|
416 |
log[1] = tweet
|
417 |
+
|
418 |
+
# Check if nontoxic
|
419 |
if max(predictions) == 0:
|
420 |
+
|
421 |
+
# Only display the first 10 characters, as more columns means less characters can fit (make everything line up)
|
422 |
+
# Display and input the data as we go
|
423 |
col1.success(tweet.split("\n")[0][:10])
|
424 |
col2.success("NO TOXICITY")
|
425 |
col3.success(f"{100 - round(probs[0].item() * 100, 1)}%")
|
|
|
431 |
log[4] = ("N/A")
|
432 |
log[5] = ("N/A")
|
433 |
else:
|
434 |
+
|
435 |
+
# Look for the maximum toxicity category and the highest toxicity type
|
436 |
_max = 0
|
437 |
_max2 = 2
|
438 |
for i in range(1, len(predictions)):
|
|
|
440 |
_max = i
|
441 |
if i > 2 and probs[i].item() > probs[_max2].item():
|
442 |
_max2 = i
|
443 |
+
|
444 |
+
# Display and input the data as we go
|
445 |
col1.error(tweet.split("\n")[0][:10])
|
446 |
col2.error(st.session_state.labels[_max])
|
447 |
col3.error(f"{round(probs[_max].item() * 100, 1)}%")
|
|
|
452 |
log[3] = (f"{round(probs[_max].item() * 100, 1)}%")
|
453 |
log[4] = (st.session_state.labels[_max2])
|
454 |
log[5] = (f"{round(probs[_max2].item() * 100, 1)}%")
|
455 |
+
|
456 |
+
# Print out the past logs in reverse order
|
457 |
for a in st.session_state.logs[box][::-1]:
|
458 |
if a[0] == 0:
|
459 |
col1.success(a[1].split("\n")[0][:10])
|
|
|
473 |
col3.warning(a[3])
|
474 |
col4.warning(a[4])
|
475 |
col5.warning(a[5])
|
476 |
+
|
477 |
+
# Add result to logs
|
478 |
st.session_state.logs[box].append(log)
|