Ptato commited on
Commit
e6df219
·
1 Parent(s): 3474006
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +2 -2
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py CHANGED
@@ -50,7 +50,7 @@ if not st.session_state.filled:
50
  elif s == 'distilbert-base-uncased-finetuned-sst-2-english':
51
  pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
52
  else:
53
- model = AutoModelForSequenceClassification.from_pretrained('Ptato/Modified-Bert-Toxicity-Classification/my_model')
54
  model.eval()
55
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
56
  encoding = tokenizer(tweet, return_tensors="pt")
@@ -144,7 +144,7 @@ if submit and tweet:
144
  elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
145
  pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
146
  else:
147
- model = AutoModelForSequenceClassification.from_pretrained('Ptato/Modified-Bert-Toxicity-Classification/my_model')
148
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
149
  encoding = tokenizer(tweet, return_tensors="pt")
150
  encoding = {k: v.to(model.device) for k,v in encoding.items()}
 
50
  elif s == 'distilbert-base-uncased-finetuned-sst-2-english':
51
  pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
52
  else:
53
+ model = AutoModelForSequenceClassification.from_pretrained("Ptato/Modified-Bert-Toxicity-Classification")
54
  model.eval()
55
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
56
  encoding = tokenizer(tweet, return_tensors="pt")
 
144
  elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
145
  pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
146
  else:
147
+ model = AutoModelForSequenceClassification.from_pretrained("Ptato/Modified-Bert-Toxicity-Classification")
148
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
149
  encoding = tokenizer(tweet, return_tensors="pt")
150
  encoding = {k: v.to(model.device) for k,v in encoding.items()}