File size: 11,473 Bytes
f0533a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from dataclasses import dataclass
from typing import Optional, Tuple, Union, List
import math
import numpy as np
import torch

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from IPython import embed


@dataclass
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.FloatTensor


class PyramidFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
    Euler scheduler.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        shift (`float`, defaults to 1.0):
            The shift value for the timestep schedule.
    """

    _compatibles = []
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        shift: float = 1.0,     # Following Stable diffusion 3, 
        stages: int = 3,
        stage_range: List = [0, 1/3, 2/3, 1],
        gamma: float = 1/3,
    ):
        
        self.timestep_ratios = {}           # The timestep ratio for each stage
        self.timesteps_per_stage = {}       # The  detailed timesteps per stage
        self.sigmas_per_stage = {}
        self.start_sigmas = {}           
        self.end_sigmas = {}
        self.ori_start_sigmas = {}

        # self.init_sigmas()
        self.init_sigmas_for_each_stage()
        self.sigma_min = self.sigmas[-1].item()
        self.sigma_max = self.sigmas[0].item()
        self.gamma = gamma

    def init_sigmas(self):
        """
            initialize the global timesteps and sigmas
        """
        num_train_timesteps = self.config.num_train_timesteps
        shift = self.config.shift

        timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)

        sigmas = timesteps / num_train_timesteps
        sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)

        self.timesteps = sigmas * num_train_timesteps

        self._step_index = None
        self._begin_index = None

        self.sigmas = sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    def init_sigmas_for_each_stage(self):
        """
            Init the timesteps for each stage
        """
        self.init_sigmas()

        stage_distance = []
        stages = self.config.stages
        training_steps = self.config.num_train_timesteps
        stage_range = self.config.stage_range

        # Init the start and end point of each stage
        for i_s in range(stages):
            # To decide the start and ends point
            start_indice = int(stage_range[i_s] * training_steps)
            start_indice = max(start_indice, 0)
            end_indice = int(stage_range[i_s+1] * training_steps)
            end_indice = min(end_indice, training_steps)
            start_sigma = self.sigmas[start_indice].item()
            end_sigma = self.sigmas[end_indice].item() if end_indice < training_steps else 0.0
            self.ori_start_sigmas[i_s] = start_sigma

            if i_s != 0:
                ori_sigma = 1 - start_sigma
                gamma = self.config.gamma
                corrected_sigma = (1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)) * ori_sigma
                # corrected_sigma = 1 / (2 - ori_sigma) * ori_sigma
                start_sigma = 1 - corrected_sigma

            stage_distance.append(start_sigma - end_sigma)
            self.start_sigmas[i_s] = start_sigma
            self.end_sigmas[i_s] = end_sigma

        # Determine the ratio of each stage according to flow length
        tot_distance = sum(stage_distance)
        for i_s in range(stages):
            if i_s == 0:
                start_ratio = 0.0
            else:
                start_ratio = sum(stage_distance[:i_s]) / tot_distance
            if i_s == stages - 1:
                end_ratio = 1.0
            else:
                end_ratio = sum(stage_distance[:i_s+1]) / tot_distance

            self.timestep_ratios[i_s] = (start_ratio, end_ratio)

        # Determine the timesteps and sigmas for each stage
        for i_s in range(stages):
            timestep_ratio = self.timestep_ratios[i_s]
            timestep_max = self.timesteps[int(timestep_ratio[0] * training_steps)]
            timestep_min = self.timesteps[min(int(timestep_ratio[1] * training_steps), training_steps - 1)]
            timesteps = np.linspace(
                timestep_max, timestep_min, training_steps + 1,
            )
            self.timesteps_per_stage[i_s] = torch.from_numpy(timesteps[:-1])
            stage_sigmas = np.linspace(
                1, 0, training_steps + 1,
            )
            self.sigmas_per_stage[i_s] = torch.from_numpy(stage_sigmas[:-1])

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increase 1 after each scheduler step.
        """
        return self._step_index

    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    def _sigma_to_t(self, sigma):
        return sigma * self.config.num_train_timesteps

    def set_timesteps(self, num_inference_steps: int, stage_index: int, device: Union[str, torch.device] = None):
        """
            Setting the timesteps and sigmas for each stage 
        """
        self.num_inference_steps = num_inference_steps
        training_steps = self.config.num_train_timesteps     
        self.init_sigmas()

        stage_timesteps = self.timesteps_per_stage[stage_index]
        timestep_max = stage_timesteps[0].item()
        timestep_min = stage_timesteps[-1].item()

        timesteps = np.linspace(
            timestep_max, timestep_min, num_inference_steps,
        )
        self.timesteps = torch.from_numpy(timesteps).to(device=device)

        stage_sigmas = self.sigmas_per_stage[stage_index]
        sigma_max = stage_sigmas[0].item()
        sigma_min = stage_sigmas[-1].item()

        ratios = np.linspace(
            sigma_max, sigma_min, num_inference_steps
        )
        sigmas = torch.from_numpy(ratios).to(device=device)
        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

        self._step_index = None

    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()

    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
                tuple.

        Returns:
            [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if self.step_index is None:
            self._step_index = 0

        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

        sigma = self.sigmas[self.step_index]
        sigma_next = self.sigmas[self.step_index + 1]

        prev_sample = sample + (sigma_next - sigma) * model_output

        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)

    def __len__(self):
        return self.config.num_train_timesteps