Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from pyramid_dit import PyramidDiTForVideoGeneration
|
7 |
+
from diffusers.utils import export_to_video
|
8 |
+
|
9 |
+
# Constants
|
10 |
+
MODEL_PATH = "pyramid-flow-model"
|
11 |
+
MODEL_REPO = "rain1011/pyramid-flow-sd3"
|
12 |
+
MODEL_VARIANT = "diffusion_transformer_768p"
|
13 |
+
MODEL_DTYPE = "bf16"
|
14 |
+
|
15 |
+
# Download and load the model
|
16 |
+
def load_model():
|
17 |
+
if not os.path.exists(MODEL_PATH):
|
18 |
+
snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model')
|
19 |
+
|
20 |
+
model = PyramidDiTForVideoGeneration(
|
21 |
+
MODEL_PATH,
|
22 |
+
MODEL_DTYPE,
|
23 |
+
model_variant=MODEL_VARIANT,
|
24 |
+
)
|
25 |
+
|
26 |
+
model.vae.to("cuda")
|
27 |
+
model.dit.to("cuda")
|
28 |
+
model.text_encoder.to("cuda")
|
29 |
+
model.vae.enable_tiling()
|
30 |
+
|
31 |
+
return model
|
32 |
+
|
33 |
+
# Global model variable
|
34 |
+
model = load_model()
|
35 |
+
|
36 |
+
# Text-to-video generation function
|
37 |
+
def generate_video(prompt, duration, guidance_scale, video_guidance_scale):
|
38 |
+
temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS)
|
39 |
+
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
|
40 |
+
|
41 |
+
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
|
42 |
+
frames = model.generate(
|
43 |
+
prompt=prompt,
|
44 |
+
num_inference_steps=[20, 20, 20],
|
45 |
+
video_num_inference_steps=[10, 10, 10],
|
46 |
+
height=768,
|
47 |
+
width=1280,
|
48 |
+
temp=temp,
|
49 |
+
guidance_scale=guidance_scale,
|
50 |
+
video_guidance_scale=video_guidance_scale,
|
51 |
+
output_type="pil",
|
52 |
+
save_memory=True,
|
53 |
+
)
|
54 |
+
|
55 |
+
output_path = "output_video.mp4"
|
56 |
+
export_to_video(frames, output_path, fps=24)
|
57 |
+
return output_path
|
58 |
+
|
59 |
+
# Image-to-video generation function
|
60 |
+
def generate_video_from_image(image, prompt, duration, video_guidance_scale):
|
61 |
+
temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS)
|
62 |
+
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
|
63 |
+
|
64 |
+
image = image.resize((1280, 768))
|
65 |
+
|
66 |
+
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
|
67 |
+
frames = model.generate_i2v(
|
68 |
+
prompt=prompt,
|
69 |
+
input_image=image,
|
70 |
+
num_inference_steps=[10, 10, 10],
|
71 |
+
temp=temp,
|
72 |
+
guidance_scale=7.0,
|
73 |
+
video_guidance_scale=video_guidance_scale,
|
74 |
+
output_type="pil",
|
75 |
+
save_memory=True,
|
76 |
+
)
|
77 |
+
|
78 |
+
output_path = "output_video_i2v.mp4"
|
79 |
+
export_to_video(frames, output_path, fps=24)
|
80 |
+
return output_path
|
81 |
+
|
82 |
+
# Gradio interface
|
83 |
+
with gr.Blocks() as demo:
|
84 |
+
gr.Markdown("# Pyramid Flow Video Generation Demo")
|
85 |
+
|
86 |
+
with gr.Tab("Text-to-Video"):
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Column():
|
89 |
+
t2v_prompt = gr.Textbox(label="Prompt")
|
90 |
+
t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)")
|
91 |
+
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale")
|
92 |
+
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale")
|
93 |
+
t2v_generate_btn = gr.Button("Generate Video")
|
94 |
+
with gr.Column():
|
95 |
+
t2v_output = gr.Video(label="Generated Video")
|
96 |
+
|
97 |
+
t2v_generate_btn.click(
|
98 |
+
generate_video,
|
99 |
+
inputs=[t2v_prompt, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale],
|
100 |
+
outputs=t2v_output
|
101 |
+
)
|
102 |
+
|
103 |
+
with gr.Tab("Image-to-Video"):
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column():
|
106 |
+
i2v_image = gr.Image(type="pil", label="Input Image")
|
107 |
+
i2v_prompt = gr.Textbox(label="Prompt")
|
108 |
+
i2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)")
|
109 |
+
i2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=4, step=0.1, label="Video Guidance Scale")
|
110 |
+
i2v_generate_btn = gr.Button("Generate Video")
|
111 |
+
with gr.Column():
|
112 |
+
i2v_output = gr.Video(label="Generated Video")
|
113 |
+
|
114 |
+
i2v_generate_btn.click(
|
115 |
+
generate_video_from_image,
|
116 |
+
inputs=[i2v_image, i2v_prompt, i2v_duration, i2v_video_guidance_scale],
|
117 |
+
outputs=i2v_output
|
118 |
+
)
|
119 |
+
|
120 |
+
demo.launch()
|