File size: 18,099 Bytes
b627819 f51532a b627819 f51532a b627819 f51532a b627819 f51532a b627819 f51532a b627819 f51532a b627819 f51532a b627819 f51532a b627819 f51532a b627819 f51532a b627819 f51532a b627819 8a16774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import inspect
import io
import os
import shutil
import tempfile
import threading
import uuid
import warnings
from datetime import datetime
from typing import Callable, Dict
import markdown
import matplotlib.pyplot as plt
import numpy as np
import orjson
import pandas as pd
from flask import Flask, Response, render_template, request, send_file
from selector.methods.distance import DISE, MaxMin, MaxSum, OptiSim
from selector.methods.partition import GridPartition, Medoid
from selector.methods.similarity import NSimilarity
from selector.measures.diversity import compute_diversity
from sklearn.metrics import pairwise_distances
from werkzeug.utils import secure_filename
# Constants
UPLOAD_FOLDER = "uploads"
ALLOWED_EXTENSIONS = {"txt", "npz", "xlsx", "xls"}
app = Flask(__name__)
app.config["MAX_CONTENT_LENGTH"] = 32 * 1024 * 1024 # 32MB max file size
app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER
file_lock = threading.Lock()
# Ensure upload directory exists
os.makedirs(app.config["UPLOAD_FOLDER"], exist_ok=True)
ALLOWED_EXTENSIONS = {"txt", "npz", "xlsx", "xls"}
# Map algorithm names to their functions
SELECTION_ALGORITHM_MAP = {
# Distance-based methods
"MaxMin": MaxMin,
"MaxSum": MaxSum,
"OptiSim": OptiSim,
"DISE": DISE,
# Partition-based methods
"GridPartition": GridPartition,
# Similarity-based methods
"NSimilarity": NSimilarity,
}
def allowed_file(filename):
"""Check if file extension is allowed."""
return "." in filename and filename.rsplit(".", 1)[1].lower() in ALLOWED_EXTENSIONS
def get_unique_upload_dir():
"""Create a unique directory for each upload session."""
unique_dir = os.path.join(app.config["UPLOAD_FOLDER"], str(uuid.uuid4()))
os.makedirs(unique_dir, exist_ok=True)
os.chmod(unique_dir, 0o777) # Full permissions for Docker container
return unique_dir
def clean_upload_dir(upload_dir):
"""Clean up upload directory after processing."""
try:
if os.path.exists(upload_dir):
shutil.rmtree(upload_dir)
except Exception as e:
print(f"Error cleaning upload directory: {e}")
def load_data(filepath):
"""Load data from various file formats."""
try:
ext = filepath.rsplit(".", 1)[1].lower()
if ext == "npz":
with np.load(filepath) as data:
return data["arr_0"] if "arr_0" in data else next(iter(data.values()))
elif ext == "txt":
return np.loadtxt(filepath)
elif ext in ["xlsx", "xls"]:
df = pd.read_excel(filepath)
return df.to_numpy()
except Exception as e:
raise ValueError(f"Error loading file {filepath}: {str(e)}")
def create_json_response(data, status=200):
"""Create a JSON response using orjson for better numpy array handling"""
return Response(
orjson.dumps(data, option=orjson.OPT_SERIALIZE_NUMPY, default=str),
status=status,
mimetype="application/json",
)
def read_markdown_file(filename):
"""Read and convert markdown file to HTML."""
filepath = os.path.join(os.path.dirname(__file__), "md_files", filename)
try:
with open(filepath, "r", encoding="utf-8") as f:
content = f.read()
# Pre-process math blocks to protect them
# content = content.replace('\\\\', '\\\\\\\\') # Escape backslashes in math
# Convert markdown to HTML with math and table support
md = markdown.Markdown(extensions=["tables", "fenced_code", "codehilite", "attr_list"])
# First pass: convert markdown to HTML
html = md.convert(content)
# Post-process math blocks
# Handle display math ($$...$$)
html = html.replace("<p>$$", '<div class="math-block">$$')
html = html.replace("$$</p>", "$$</div>")
# Handle inline math ($...$)
# We don't need special handling for inline math as MathJax will handle it
return html
except Exception as e:
print(f"Error reading markdown file {filename}: {e}")
return f"<p>Error loading content: {str(e)}</p>"
def get_default_parameters(func):
"""Get default parameters for a function from its signature."""
sig = inspect.signature(func)
defaults = {}
for name, param in sig.parameters.items():
if name == "self" or name == "fun_dist": # Skip self and dist_metric
continue
if param.default is not param.empty:
defaults[name] = param.default
return defaults
@app.route("/get_default_params/<algorithm>")
def get_default_params(algorithm):
"""API endpoint to get default parameters for an algorithm."""
if algorithm not in SELECTION_ALGORITHM_MAP:
return create_json_response({"error": f"Unknown algorithm: {algorithm}"}, 400)
try:
# Get the algorithm class
algorithm_class = SELECTION_ALGORITHM_MAP[algorithm]
# Get default parameters from __init__
params = get_default_parameters(algorithm_class.__init__)
return create_json_response(params)
except Exception as e:
return create_json_response({"error": f"Error getting parameters: {str(e)}"}, 500)
@app.route("/get_default_selection_params/<algorithm>")
def get_default_selection_params(algorithm):
"""API endpoint to get default parameters for a selection algorithm."""
if algorithm not in SELECTION_ALGORITHM_MAP:
return create_json_response({"error": f"Algorithm unsupported: {algorithm}"}, 400)
try:
return create_json_response(get_default_selection_params(algorithm))
except Exception as e:
return create_json_response({"error": f"Error getting parameters: {str(e)}"}, 500)
@app.route("/")
def home():
return render_template("index.html")
@app.route("/md/<filename>")
def get_markdown(filename):
"""Serve markdown files as HTML."""
if not filename.endswith(".md"):
filename = filename + ".md"
html = read_markdown_file(filename)
return create_json_response({"html": html})
def process_selection(arr, algorithm, parameters, dist_metric):
"""
Process feature matrix using the specified selection algorithm.
Parameters
----------
arr : np.ndarray
Input feature matrix
algorithm : str
Name of the selection algorithm to use
parameters : dict
Parameters for the algorithm
dist_metric : str, optional
Distance function to use.
Returns
-------
dict
Dictionary containing results and any warnings
"""
result = {"success": False, "error": None, "warnings": [], "indices": None}
try:
# Get the algorithm class
algorithm_class = SELECTION_ALGORITHM_MAP.get(algorithm)
if algorithm_class is None:
raise ValueError(f"Unknown algorithm: {algorithm}")
# Get size parameter
size = parameters.pop('size', None)
if size is None:
raise ValueError("Subset size must be specified")
try:
size = int(size)
if size < 1:
raise ValueError
except (TypeError, ValueError):
raise ValueError("Subset size must be a positive integer")
# Validate size against array dimensions
if size > arr.shape[0]:
raise ValueError(f"Subset size ({size}) cannot be larger than the number of samples ({arr.shape[0]})")
# Handle distance-based methods differently
is_distance_based = algorithm in ["MaxMin", "MaxSum", "OptiSim", "DISE"]
# Convert array to float for computations
arr_float = arr.astype(float)
# Compute or prepare the input matrix
if is_distance_based:
# For distance-based methods, compute distance matrix
try:
if dist_metric and dist_metric != "":
# Use specified distance metric
arr_dist = pairwise_distances(arr_float, metric=dist_metric)
else:
# Default to euclidean distance
arr_dist = pairwise_distances(arr_float, metric='euclidean')
except Exception as e:
raise ValueError(f"Error computing distance matrix: {str(e)}")
else:
# For non-distance-based methods, use the original float array
arr_dist = arr_float
# Handle special case for GridPartition
if algorithm == "GridPartition":
# Ensure nbins_axis is provided and is an integer
nbins_axis = parameters.get('nbins_axis')
if nbins_axis is None:
raise ValueError("nbins_axis must be specified for GridPartition")
try:
parameters['nbins_axis'] = int(nbins_axis)
if parameters['nbins_axis'] < 1:
raise ValueError
except (TypeError, ValueError):
raise ValueError("nbins_axis must be a positive integer")
# Initialize and run the algorithm
try:
collector = algorithm_class(**parameters)
indices = collector.select(arr_dist, size=size)
# Ensure indices are valid
if indices is None:
raise ValueError("Algorithm returned None instead of indices")
if len(indices) != size:
warnings.warn(f"Algorithm returned {len(indices)} indices but expected {size}")
# Convert indices to list and validate
indices_list = indices.tolist() if isinstance(indices, np.ndarray) else list(indices)
if not all(isinstance(i, (int, np.integer)) and 0 <= i < arr.shape[0] for i in indices_list):
raise ValueError("Algorithm returned invalid indices")
result["success"] = True
result["indices"] = indices_list
except Exception as e:
import traceback
print(f"Traceback: {traceback.format_exc()}")
raise ValueError(f"Error executing algorithm: {str(e)}")
except Warning as w:
result["warnings"].append(str(w))
except Exception as e:
result["error"] = str(e)
return result
@app.route("/upload_selection", methods=["POST"])
def upload_selection_file():
"""Handle file upload and process selection."""
try:
print("Debug - Starting upload_selection_file")
if "file" not in request.files:
return create_json_response({"error": "No file provided"}, 400)
file = request.files["file"]
if file.filename == "":
return create_json_response({"error": "No file selected"}, 400)
if not allowed_file(file.filename):
return create_json_response({"error": "File type not allowed"}, 400)
# Get parameters
algorithm = request.form.get("algorithm")
if not algorithm:
return create_json_response({"error": "No algorithm specified"}, 400)
# Get size parameter
size = request.form.get("size")
if not size:
return create_json_response({"error": "Subset size must be specified"}, 400)
# Get distance function
dist_metric = request.form.get("func_dist", "")
# Parse parameters
try:
parameters = orjson.loads(request.form.get("parameters", "{}"))
except Exception as e:
parameters = {}
# Add size to parameters
parameters["size"] = size
# Create a unique directory for this upload
upload_dir = get_unique_upload_dir()
try:
# Save file with unique name
file_path = os.path.join(
upload_dir, secure_filename(str(uuid.uuid4()) + "_" + file.filename)
)
with file_lock:
file.save(file_path)
# os.chmod(file_path, 0o666) # Read/write for all
# Load data
array = load_data(file_path)
# Process the selection with separate dist_metric parameter
result = process_selection(array, algorithm, parameters, dist_metric)
return create_json_response(result)
except Exception as e:
return create_json_response({"error": str(e)}, 500)
finally:
# Clean up the unique upload directory
clean_upload_dir(upload_dir)
except Exception as e:
return create_json_response({"error": f"Error processing request: {str(e)}"}, 400)
@app.route("/download", methods=["POST"])
def download():
"""Download selected indices in specified format."""
try:
data = request.get_json()
if not data or "indices" not in data:
return create_json_response({"error": "No indices provided"}, 400)
indices = data["indices"]
format = data.get("format", "txt")
timestamp = data.get("timestamp", datetime.now().strftime("%Y%m%d-%H%M%S"))
# Create a BytesIO buffer for the file
buffer = io.BytesIO()
# Define format-specific settings
format_settings = {
"txt": {
"extension": "txt",
"mimetype": "text/plain",
"processor": lambda b, d: b.write("\n".join(map(str, d)).encode()),
},
"npz": {
"extension": "npz",
"mimetype": "application/octet-stream",
"processor": lambda b, d: np.savez_compressed(b, indices=np.array(d)),
},
"xlsx": {
"extension": "xlsx",
"mimetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
"processor": lambda b, d: pd.DataFrame({"selected_indices": d}).to_excel(
b, index=False
),
},
}
if format not in format_settings:
return create_json_response({"error": f"Unsupported format: {format}"}, 400)
settings = format_settings[format]
# Process the file
settings["processor"](buffer, indices)
# Create filename with correct extension
filename = f'selected_indices_{timestamp}.{settings["extension"]}'
# Seek to beginning of file
buffer.seek(0)
return send_file(
buffer, mimetype=settings["mimetype"], as_attachment=True, download_name=filename
)
except Exception as e:
print(f"Error in download: {str(e)}")
return create_json_response({"error": str(e)}, 500)
@app.route("/calculate_diversity", methods=["POST"])
def calculate_diversity():
"""Calculate diversity score for the given feature subset."""
try:
# Get files from request
feature_subset_file = request.files.get('feature_subset')
features_file = request.files.get('features')
if not feature_subset_file:
return create_json_response({"error": "Feature subset file is required"}, 400)
# Get other parameters
div_type = request.form.get('div_type', 'shannon_entropy')
div_parameters = orjson.loads(request.form.get('div_parameters', '{}'))
# Read feature subset
try:
# Save the uploaded file
feature_subset_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(feature_subset_file.filename))
feature_subset_file.save(feature_subset_path)
# Read the feature subset file
feature_subset = load_data(feature_subset_path)
if feature_subset is None:
raise ValueError(f"Failed to read feature subset file: {feature_subset_file.filename}")
# Convert to float array
feature_subset = feature_subset.astype(float)
# Clean up the temporary file
os.remove(feature_subset_path)
except Exception as e:
return create_json_response({"error": f"Error reading feature subset file: {str(e)}"}, 400)
# Read features if provided
features = None
if features_file:
try:
# Save the uploaded file
features_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(features_file.filename))
features_file.save(features_path)
# Read the features file
features = load_data(features_path)
if features is None:
raise ValueError(f"Failed to read features file: {features_file.filename}")
# Convert to float array
features = features.astype(float)
# Clean up the temporary file
os.remove(features_path)
except Exception as e:
return create_json_response({"error": f"Error reading features file: {str(e)}"}, 400)
# Extract parameters
normalize = div_parameters.get('normalize', False)
truncation = div_parameters.get('truncation', False)
cs = div_parameters.get('cs', None)
# Calculate diversity
try:
diversity_score = compute_diversity(
feature_subset=feature_subset,
div_type=div_type,
normalize=normalize,
truncation=truncation,
features=features,
cs=cs
)
return create_json_response({
"success": True,
"diversity_score": float(diversity_score)
})
except Exception as e:
import traceback
print(f"Error calculating diversity: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
return create_json_response({"error": f"Error calculating diversity: {str(e)}"}, 400)
except Exception as e:
return create_json_response({"error": str(e)}, 500)
@app.route('/health')
def health_check():
"""Health check endpoint for Docker"""
return create_json_response({"status": "healthy"})
if __name__ == "__main__":
app.run(debug=False, host="0.0.0.0", port=7860)
|