File size: 7,036 Bytes
3edfd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a509e98
3edfd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import gradio as gr
import clueai
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ClueAI/ChatYuan-large-v2")
model = T5ForConditionalGeneration.from_pretrained("ClueAI/ChatYuan-large-v2")
# 使用
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

base_info = "用户:你是谁?\n小元:我是元语智能公司研发的AI智能助手, 在不违反原则的情况下,我可以回答你的任何问题。\n"
def preprocess(text):
  text = f"{base_info}{text}"
  text = text.replace("\n", "\\n").replace("\t", "\\t")
  return text

def postprocess(text):
  return text.replace("\\n", "\n").replace("\\t", "\t").replace('%20','  ')#.replace(" ", " ")



generate_config = {'do_sample': True, 'top_p': 0.9, 'top_k': 50, 'temperature': 0.7, 
                   'num_beams': 1, 'max_length': 1024, 'min_length': 3, 'no_repeat_ngram_size': 5, 
                   'length_penalty': 0.6, 'return_dict_in_generate': True, 'output_scores': True}
def answer(text, sample=True, top_p=0.9, temperature=0.7):
  '''sample:是否抽样。生成任务,可以设置为True;
  top_p:0-1之间,生成的内容越多样'''
  text = preprocess(text)
  encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=1024, return_tensors="pt").to(device) 
  if not sample:
      out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=1024, num_beams=1, length_penalty=0.6)
  else:
      out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=1024, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=12)
  #out=model.generate(**encoding, **generate_config)
  out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True)
  return postprocess(out_text[0])

def clear_session():
    return '', None

def chatyuan_bot(input, history):
    history = history or []
    if len(history) > 5:
       history = history[-5:]

    context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
    #print(context)

    input_text = context + "\n用户:" + input + "\n小元:"
    input_text = input_text.strip()
    output_text = answer(input_text)
    print("open_model".center(20, "="))
    print(f"{input_text}\n{output_text}")
    #print("="*20)
    history.append((input, output_text))
    #print(history)
    return history, history
def chatyuan_bot_regenerate(input, history):
    
    history = history or []
    
    if history:
      input=history[-1][0]
      history=history[:-1]
      
    
    if len(history) > 5:
       history = history[-5:]

    context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
    #print(context)

    input_text = context + "\n用户:" + input + "\n小元:"
    input_text = input_text.strip()
    output_text = answer(input_text)
    print("open_model".center(20, "="))
    print(f"{input_text}\n{output_text}")
    history.append((input, output_text))
    #print(history)
    return history, history
  
block = gr.Blocks()

with block as demo:
    gr.Markdown("""<h1><center>ChatYuan-By QiuLingYan</center></h1>
        <font size=4>回答来自ChatYuan, 是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点 | Answer generated by ChatYuan model</font>
        <font size=4>注意:gradio对markdown代码格式展示有限</font>
    """)
    chatbot = gr.Chatbot(label='ChatYuan')
    message = gr.Textbox()
    state = gr.State()
    message.submit(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
    with gr.Row():
      clear_history = gr.Button("👋 清除历史对话 | Clear History")
      clear = gr.Button('🧹 清除发送框 | Clear Input')
      send = gr.Button("🚀 发送 | Send")
      regenerate = gr.Button("🚀 重新生成本次结果 | regenerate")


    regenerate.click(chatyuan_bot_regenerate, inputs=[message, state], outputs=[chatbot, state])      
    send.click(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
    clear.click(lambda: None, None, message, queue=False)
    clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)
    

def ChatYuan(api_key, text_prompt):

    cl = clueai.Client(api_key,
                        check_api_key=True)
    # generate a prediction for a prompt
    # 需要返回得分的话,指定return_likelihoods="GENERATION"
    prediction = cl.generate(model_name='ChatYuan-large', prompt=text_prompt)
    # print the predicted text
    #print('prediction: {}'.format(prediction.generations[0].text))
    response = prediction.generations[0].text
    if response == '':
        response = "很抱歉,我无法回答这个问题"

    return response
  
def chatyuan_bot_api(api_key, input, history):
    history = history or []

    if len(history) > 5:
      history = history[-5:]

    context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
    #print(context)

    input_text = context + "\n用户:" + input + "\n小元:"
    input_text = input_text.strip()
    output_text = ChatYuan(api_key, input_text)
    print("api".center(20, "="))
    print(f"api_key:{api_key}\n{input_text}\n{output_text}")
    #print("="*20)
    history.append((input, output_text))
    #print(history)
    return history, history



block = gr.Blocks()

with block as demo_1:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
    <font size=4>回答来自ChatYuan, 以上是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点  | Answer generated by ChatYuan model</font>
    <font size=4>注意:gradio对markdown代码格式展示有限</font>
    <font size=4>在使用此功能前,你需要有个API key. API key 可以通过这个<a href='https://www.clueai.cn/' target="_blank">平台</a>获取</font>
    """)
    api_key = gr.inputs.Textbox(label="请输入你的api-key(必填)", default="", type='password')
    chatbot = gr.Chatbot(label='ChatYuan')
    message = gr.Textbox()
    state = gr.State()
    message.submit(chatyuan_bot_api, inputs=[api_key,message, state], outputs=[chatbot, state])
    with gr.Row():
      clear_history = gr.Button("👋 清除历史对话 | Clear Context")
      clear = gr.Button('🧹 清除发送框 | Clear Input')
      send = gr.Button("🚀 发送 | Send")

    send.click(chatyuan_bot_api, inputs=[api_key,message, state], outputs=[chatbot, state],api_name='send')
    clear.click(lambda: None, None, message, queue=False)
    clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)

block = gr.Blocks()
with block as introduction:
    gr.Markdown("""啥也没有
    """)


gui = gr.TabbedInterface(interface_list=[demo], tab_names=["开源模型"])
gui.launch(quiet=True,show_api=True, share = False)