QuophyDzifa commited on
Commit
10be56e
·
1 Parent(s): 23bc11b

add application file

Browse files
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # """gradio_app.ipynb
3
+
4
+ # Automatically generated by Colaboratory.
5
+
6
+ # Original file is located at
7
+ # https://colab.research.google.com/drive/1u8oKw0KTptVWpY-cKFL87N2IDDrM4lTc
8
+ # """
9
+
10
+
11
+ import gradio as gr
12
+ import pandas as pd
13
+ import numpy as np
14
+ import pickle
15
+ from scipy.special import softmax
16
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
17
+
18
+
19
+ # Requirements
20
+ model_path = "QuophyDzifa/Sentiment-Analysis-Model"
21
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
22
+ config = AutoConfig.from_pretrained(model_path)
23
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
24
+
25
+
26
+ # Preprocess text (username and link placeholders)
27
+ def preprocess(text):
28
+ new_text = []
29
+ for t in text.split(" "):
30
+ t = '@user' if t.startswith('@') and len(t) > 1 else t
31
+ t = 'http' if t.startswith('http') else t
32
+ new_text.append(t)
33
+ return " ".join(new_text)
34
+
35
+
36
+ def sent_analysis(text):
37
+ text = preprocess(text)
38
+
39
+ # PyTorch-based models
40
+ encoded_input = tokenizer(text, return_tensors='pt')
41
+ output = model(**encoded_input)
42
+ scores_ = output[0][0].detach().numpy()
43
+ scores_ = softmax(scores_)
44
+
45
+ # Format output dict of scores
46
+ labels = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
47
+ scores = {labels[i]: float(s) for i, s in enumerate(scores_)}
48
+ return scores
49
+
50
+
51
+ demo = gr.Interface(
52
+ fn=sent_analysis,
53
+ inputs=gr.Textbox(placeholder="Share your thoughts on COVID vaccines..."),
54
+ outputs="label",
55
+ interpretation="default",
56
+ examples=[
57
+ ["I feel confident about covid vaccines"],
58
+ ["I do not like the covid vaccine"],
59
+ ["I like the covid vaccines"],
60
+ ["The covid vaccines are effective"]
61
+ ],
62
+ title="COVID Vaccine Sentiment Analysis",
63
+ description="An AI model that predicts sentiment about COVID vaccines, providing labels and probabilities for 'NEGATIVE', 'NEUTRAL', and 'POSITIVE' sentiments.",
64
+ theme="default",
65
+ live=True
66
+ )
67
+
68
+ if __name__ == "__main__":
69
+ demo.launch("0.0.0.0:7860")
notebook/Fine-tuning Hugging face text classification model - _distilbert-base-uncased_.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebook/Fine-tuning Hugging face text classification model - roberta-base.ipynb ADDED
The diff for this file is too large to render. See raw diff