Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- Dockerfile +17 -0
- app.py +72 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the current directory contents into the container at /app
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Install any needed packages specified in requirements.txt
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Make port 7575 available to the world outside this container
|
14 |
+
EXPOSE 7575
|
15 |
+
|
16 |
+
# Run the application when the container launches
|
17 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7575"]
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import joblib
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
app = FastAPI(title="Airbnb Price Prediction in Copenhagen")
|
8 |
+
|
9 |
+
# Load model and preprocessing objects
|
10 |
+
model_xgb = joblib.load('model_xgb.joblib')
|
11 |
+
scaler = joblib.load('scaler.joblib')
|
12 |
+
ohe = joblib.load('ohe.joblib')
|
13 |
+
|
14 |
+
class RoomFeatures(BaseModel):
|
15 |
+
neighbourhood_cleansed: str
|
16 |
+
room_type: str
|
17 |
+
instant_bookable: bool
|
18 |
+
accommodates: int
|
19 |
+
bedrooms: int
|
20 |
+
beds: int
|
21 |
+
minimum_nights_avg_ntm: int
|
22 |
+
|
23 |
+
@app.post("/predict")
|
24 |
+
async def predict_price(features: RoomFeatures):
|
25 |
+
try:
|
26 |
+
# Prepare categorical features
|
27 |
+
cat_features = pd.DataFrame({
|
28 |
+
'neighbourhood_cleansed': [features.neighbourhood_cleansed],
|
29 |
+
'room_type': [features.room_type]
|
30 |
+
})
|
31 |
+
cat_encoded = pd.DataFrame(
|
32 |
+
ohe.transform(cat_features).todense(),
|
33 |
+
columns=ohe.get_feature_names_out(['neighbourhood_cleansed', 'room_type'])
|
34 |
+
)
|
35 |
+
|
36 |
+
# Prepare numerical features
|
37 |
+
num_features = pd.DataFrame({
|
38 |
+
'instant_bookable': [int(features.instant_bookable)],
|
39 |
+
'accommodates': [features.accommodates],
|
40 |
+
'bedrooms': [features.bedrooms],
|
41 |
+
'beds': [features.beds],
|
42 |
+
'minimum_nights_avg_ntm': [features.minimum_nights_avg_ntm]
|
43 |
+
})
|
44 |
+
num_scaled = pd.DataFrame(scaler.transform(num_features), columns=num_features.columns)
|
45 |
+
|
46 |
+
# Combine features
|
47 |
+
combined_features = pd.concat([num_scaled, cat_encoded], axis=1)
|
48 |
+
|
49 |
+
# Make prediction
|
50 |
+
predicted_price = model_xgb.predict(combined_features)[0]
|
51 |
+
|
52 |
+
# Calculate price range
|
53 |
+
lower_range = max(0, round(predicted_price - 350))
|
54 |
+
upper_range = round(predicted_price + 350)
|
55 |
+
|
56 |
+
return {
|
57 |
+
"predicted_price": round(predicted_price),
|
58 |
+
"suggested_price_range": {
|
59 |
+
"lower": lower_range,
|
60 |
+
"upper": upper_range
|
61 |
+
}
|
62 |
+
}
|
63 |
+
except Exception as e:
|
64 |
+
raise HTTPException(status_code=400, detail=str(e))
|
65 |
+
|
66 |
+
@app.get("/")
|
67 |
+
async def root():
|
68 |
+
return {"message": "Welcome to the Airbnb Price Prediction API for Copenhagen"}
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
import uvicorn
|
72 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|