hair_texture / app.py
Krishs21
app.py upload
c148373
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing.image import img_to_array, load_img
# Load the trained model
model = tf.keras.models.load_model('hair_model.h5')
# Define labels for classification
labels = ['curly', 'straight', 'kinky', 'wavy', 'dreadlocks']
# Image preprocessing function
def preprocess_image(image, img_height=299, img_width=299):
image = image.resize((img_height, img_width))
image = img_to_array(image) / 255.0 # Rescale the image
return np.expand_dims(image, axis=0) # Add batch dimension
# Prediction function
def predict_hair_type(image):
image = preprocess_image(image)
predictions = model.predict(image)
predicted_label = labels[np.argmax(predictions)]
confidence = np.max(predictions)
return f"{predicted_label} ({confidence:.2%} confidence)"
# Gradio interface
iface = gr.Interface(
fn=predict_hair_type,
inputs=gr.Image(type="pil"),
outputs="text",
title="Hair Type Classifier",
description="Upload an image to predict the hair type (curly, straight, kinky, wavy, or dreadlocks)."
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()