File size: 5,315 Bytes
de015f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import torch\n",
    "import numpy as np\n",
    "import PIL\n",
    "from PIL import Image\n",
    "from IPython.display import HTML\n",
    "from pyramid_dit import PyramidDiTForVideoGeneration\n",
    "from IPython.display import Image as ipython_image\n",
    "from diffusers.utils import load_image, export_to_video, export_to_gif"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "variant='diffusion_transformer_768p'         # For high resolution\n",
    "# variant='diffusion_transformer_384p'       # For low resolution\n",
    "\n",
    "model_path = \"/home/jinyang06/models/pyramid-flow\"   # The downloaded checkpoint dir\n",
    "model_dtype = 'bf16'\n",
    "\n",
    "device_id = 0\n",
    "torch.cuda.set_device(device_id)\n",
    "\n",
    "model = PyramidDiTForVideoGeneration(\n",
    "    model_path,\n",
    "    model_dtype,\n",
    "    model_variant=variant,\n",
    ")\n",
    "\n",
    "model.vae.to(\"cuda\")\n",
    "model.dit.to(\"cuda\")\n",
    "model.text_encoder.to(\"cuda\")\\\n",
    "\n",
    "if model_dtype == \"bf16\":\n",
    "    torch_dtype = torch.bfloat16 \n",
    "elif model_dtype == \"fp16\":\n",
    "    torch_dtype = torch.float16\n",
    "else:\n",
    "    torch_dtype = torch.float32\n",
    "\n",
    "\n",
    "def show_video(ori_path, rec_path, width=\"100%\"):\n",
    "    html = ''\n",
    "    if ori_path is not None:\n",
    "        html += f\"\"\"<video controls=\"\" name=\"media\" data-fullscreen-container=\"true\" width=\"{width}\">\n",
    "        <source src=\"{ori_path}\" type=\"video/mp4\">\n",
    "        </video>\n",
    "        \"\"\"\n",
    "    \n",
    "    html += f\"\"\"<video controls=\"\" name=\"media\" data-fullscreen-container=\"true\" width=\"{width}\">\n",
    "    <source src=\"{rec_path}\" type=\"video/mp4\">\n",
    "    </video>\n",
    "    \"\"\"\n",
    "    return HTML(html)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Text-to-Video"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = \"A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors\"\n",
    "\n",
    "# used for 384p model variant\n",
    "# width = 640\n",
    "# height = 384\n",
    "\n",
    "# used for 768p model variant\n",
    "width = 1280\n",
    "height = 768\n",
    "\n",
    "temp = 16   # temp in [1, 31] <=> frame in [1, 241] <=> duration in [0, 10s]\n",
    "\n",
    "model.vae.enable_tiling()\n",
    "\n",
    "with torch.no_grad(), torch.cuda.amp.autocast(enabled=True if model_dtype != 'fp32' else False, dtype=torch_dtype):\n",
    "    frames = model.generate(\n",
    "        prompt=prompt,\n",
    "        num_inference_steps=[20, 20, 20],\n",
    "        video_num_inference_steps=[10, 10, 10],\n",
    "        height=height,\n",
    "        width=width,\n",
    "        temp=temp,\n",
    "        guidance_scale=9.0,         # The guidance for the first frame\n",
    "        video_guidance_scale=5.0,   # The guidance for the other video latent\n",
    "        output_type=\"pil\",\n",
    "    )\n",
    "\n",
    "export_to_video(frames, \"./text_to_video_sample.mp4\", fps=24)\n",
    "show_video(None, \"./text_to_video_sample.mp4\", \"70%\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Image-to-Video"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image_path = 'assets/the_great_wall.jpg'\n",
    "image = Image.open(image_path).convert(\"RGB\")\n",
    "\n",
    "width = 1280\n",
    "height = 768\n",
    "temp = 16\n",
    "\n",
    "image = image.resize((width, height))\n",
    "\n",
    "display(image)\n",
    "\n",
    "prompt = \"FPV flying over the Great Wall\"\n",
    "\n",
    "with torch.no_grad(), torch.cuda.amp.autocast(enabled=True if model_dtype != 'fp32' else False, dtype=torch_dtype):\n",
    "    frames = model.generate_i2v(\n",
    "        prompt=prompt,\n",
    "        input_image=image,\n",
    "        num_inference_steps=[10, 10, 10],\n",
    "        temp=temp,\n",
    "        guidance_scale=7.0,\n",
    "        video_guidance_scale=4.0,\n",
    "        output_type=\"pil\",\n",
    "    )\n",
    "\n",
    "export_to_video(frames, \"./image_to_video_sample.mp4\", fps=24)\n",
    "show_video(None, \"./image_to_video_sample.mp4\", \"70%\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}