File size: 7,414 Bytes
7a5c6a0
 
 
 
 
 
 
 
 
 
 
8b2a350
7a5c6a0
 
 
efe3c52
7a5c6a0
efe3c52
1287f22
7a5c6a0
efe3c52
 
 
2e755f1
 
3b1f734
efe3c52
 
1287f22
9b5dbca
1287f22
 
 
 
7a5c6a0
c5a40b1
 
1287f22
7ed62c0
3b1f734
 
c5a40b1
7a5c6a0
 
 
 
 
 
 
97f34a9
7a5c6a0
 
 
 
 
efe3c52
 
7a5c6a0
 
71b8b82
7a5c6a0
 
 
efe3c52
7a5c6a0
 
 
 
 
1287f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2a350
1287f22
 
 
 
 
 
 
 
 
 
8b2a350
7a5c6a0
c5a40b1
1287f22
 
c5a40b1
7a5c6a0
c5a40b1
c6b395b
 
 
 
 
7a5c6a0
 
 
ad64d06
7a5c6a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a40b1
7a5c6a0
 
c5a40b1
d44dcbe
7a5c6a0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import cv2
import einops
import gradio as gr
import numpy as np
import torch


from pytorch_lightning import seed_everything
from util import resize_image, HWC3, apply_canny
from ldm.models.diffusion.ddim import DDIMSampler


from cldm.model import create_model, load_state_dict

from huggingface_hub import hf_hub_url, cached_download

REPO_ID = "lllyasviel/ControlNet"
canny_checkpoint = "models/control_sd15_canny.pth"
scribble_checkpoint = "models/control_sd15_scribble.pth"

canny_model = create_model('./models/cldm_v15.yaml')
canny_model.load_state_dict(load_state_dict(cached_download(
    hf_hub_url(REPO_ID, canny_checkpoint)
), location='cpu'))
canny_model = canny_model.cuda()
ddim_sampler = DDIMSampler(canny_model)


scribble_model = create_model('./models/cldm_v15.yaml')
scribble_model.load_state_dict(load_state_dict(cached_download(
    hf_hub_url(REPO_ID, scribble_checkpoint)
), location='cpu'))
scribble_model = canny_model.cuda()
ddim_sampler_scribble = DDIMSampler(scribble_model)

def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
    # TODO: Add other control tasks
    if input_control == "Scribble":
        return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta) 
    return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
    
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
    with torch.no_grad():
        img = resize_image(HWC3(input_image), image_resolution)
        H, W, C = img.shape

        detected_map = apply_canny(img, low_threshold, high_threshold)
        detected_map = HWC3(detected_map)

        control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        seed_everything(seed)

        cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)
        x_samples = canny_model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
    return [255 - detected_map] + results

def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
    with torch.no_grad():
        img = resize_image(HWC3(input_image), image_resolution)
        H, W, C = img.shape

        detected_map = np.zeros_like(img, dtype=np.uint8)
        detected_map[np.min(img, axis=2) < 127] = 255

        control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        seed_everything(seed)

        cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)


        samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        x_samples = scribble_model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
    return [255 - detected_map] + results
    
block = gr.Blocks().queue()
control_task_list = [
    "Canny Edge Map",
    "Scribble"
]
with block:
    gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                This is a simple demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation. 
              </p>
              ''')
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="numpy")
            input_control = gr.Dropdown(control_task_list, value="Canny Edge Map", label="Control Task")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(label="Run")
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
                low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
                high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
                eta = gr.Number(label="eta (DDIM)", value=0.0)
                a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])

    examples = gr.Examples(examples=[["bird.png", "bird","Canny Edge Map"]],inputs = [input_image, prompt, input_control], outputs = [result_gallery])


block.launch(debug = True)