File size: 8,234 Bytes
3b41a3f
 
 
 
10f4748
 
8d95fbe
10f4748
 
 
 
3b41a3f
10f4748
3b41a3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10f4748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b41a3f
10f4748
 
 
 
 
50b3319
10f4748
50b3319
10f4748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b41a3f
10f4748
 
3b41a3f
10f4748
 
 
 
 
 
 
3b41a3f
10f4748
 
 
 
 
 
 
 
 
3b41a3f
10f4748
 
 
 
 
 
 
3b41a3f
10f4748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b41a3f
10f4748
 
 
 
3b41a3f
10f4748
3b41a3f
 
10f4748
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
from PIL import Image
from transformers import CLIPProcessor, CLIPModel

from fastsam import FastSAM, FastSAMPrompt

project_path = "."
sam_model = FastSAM(f"{project_path}/FastSAM-x.pt")

DEVICE = "cpu"
sample_images = [f"{project_path}/sample_images/{i}.jpg" for i in range(5)]
prediction_image = None
sam_prediction_image = None

clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")


def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths


def read_image(path):
    img = Image.open(path)
    return img


def set_prediction_image(evt: gr.SelectData, gallery):
    global prediction_image
    if isinstance(gallery[evt.index], dict):
        prediction_image = gallery[evt.index]["name"]
    else:
        prediction_image = gallery[evt.index][0]["name"]


def predict(text):
    text_classes = text.split(",")
    text_classes = [sentence.strip() for sentence in text_classes]

    image = read_image(prediction_image)

    inputs = clip_processor(
        text=text_classes,
        images=image,
        return_tensors="pt",
        padding=True,
    )
    outputs = clip_model(**inputs)
    logits_per_image = (
        outputs.logits_per_image
    )  # this is the image-text similarity score
    probs = logits_per_image.softmax(dim=1)[0]
    results = {text_class: prob.item() for text_class, prob in zip(text_classes, probs)}
    return {output: gr.update(value=results)}


def show_hide_sam_text(status):
    if status == "Text Based":
        return {sam_input_text: gr.update(visible=True)}
    return {sam_input_text: gr.update(visible=False)}


def set_prediction_image_sam(evt: gr.SelectData, gallery):
    global sam_prediction_image
    if isinstance(gallery[evt.index], dict):
        sam_prediction_image = gallery[evt.index]["name"]
    else:
        sam_prediction_image = gallery[evt.index][0]["name"]


def sam_predict(radio, text):
    output_path = f"{project_path}/output/sam_results.jpg"
    everything_results = sam_model(
        sam_prediction_image,
        device=DEVICE,
        retina_masks=True,
        imgsz=1024,
        conf=0.4,
        iou=0.9,
    )
    prompt_process = FastSAMPrompt(
        sam_prediction_image, everything_results, device=DEVICE
    )
    ann = prompt_process.everything_prompt()
    if radio == "Text Based":
        ann = prompt_process.text_prompt(text=text)

    prompt_process.plot(
        annotations=ann,
        output_path=output_path,
    )

    return {sam_output: gr.update(value=output_path)}


with gr.Blocks() as app:
    gr.Markdown("## FastSAM & CLIP Inference with Gradio")
    with gr.Tab("FastSAM"):
        gr.Markdown("### Image Segmentation with FastSAM")
        gr.Markdown(
            """Please an image or select one of the sample images.
            Select either segment everything or text based segmentation.
            Enter the text if you opt for segment based on text and hit Submit.
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    with gr.Group():
                        upload_gallery = gr.Gallery(
                            value=None,
                            label="Uploaded images",
                            show_label=False,
                            elem_id="gallery_upload",
                            columns=5,
                            rows=2,
                            height="auto",
                            object_fit="contain",
                        )
                        upload_button = gr.UploadButton(
                            "Click to Upload images",
                            file_types=["image"],
                            file_count="multiple",
                        )
                        upload_button.upload(upload_file, upload_button, upload_gallery)

                    with gr.Group():
                        sample_gallery = gr.Gallery(
                            value=sample_images,
                            label="Sample images",
                            show_label=False,
                            elem_id="gallery_sample",
                            columns=3,
                            rows=2,
                            height="auto",
                            object_fit="contain",
                        )

                    upload_gallery.select(
                        set_prediction_image_sam, inputs=[upload_gallery]
                    )
                    sample_gallery.select(
                        set_prediction_image_sam, inputs=[sample_gallery]
                    )
                with gr.Box():
                    radio = gr.Radio(
                        choices=["Segment Everything", "Text Based"],
                        value="Segment Everything",
                        type="value",
                        label="Select a Segmentation approach",
                        interactive=True,
                    )
                    sam_input_text = gr.TextArea(
                        label="Segementation Input",
                        placeholder="Please enter some text",
                        interactive=True,
                        visible=False,
                    )
                radio.change(
                    show_hide_sam_text, inputs=[radio], outputs=[sam_input_text]
                )

                sam_submit_btn = gr.Button(value="Submit")
            with gr.Column():
                with gr.Box():
                    sam_output = gr.Image(value=None, label="Segmentation Results")

                sam_submit_btn.click(
                    sam_predict, inputs=[radio, sam_input_text], outputs=[sam_output]
                )
    with gr.Tab("CLIP"):
        gr.Markdown("### ERA Session19 - Zero Shot Classification with CLIP")
        gr.Markdown(
            "Please an image or select one of the sample images. Type some classification labels separated by comma. For ex: dog, cat"
        )
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    with gr.Group():
                        upload_gallery = gr.Gallery(
                            value=None,
                            label="Uploaded images",
                            show_label=False,
                            elem_id="gallery_upload",
                            columns=5,
                            rows=2,
                            height="auto",
                            object_fit="contain",
                        )
                        upload_button = gr.UploadButton(
                            "Click to Upload images",
                            file_types=["image"],
                            file_count="multiple",
                        )
                        upload_button.upload(upload_file, upload_button, upload_gallery)

                    with gr.Group():
                        sample_gallery = gr.Gallery(
                            value=sample_images,
                            label="Sample images",
                            show_label=False,
                            elem_id="gallery_sample",
                            columns=3,
                            rows=2,
                            height="auto",
                            object_fit="contain",
                        )

                    upload_gallery.select(set_prediction_image, inputs=[upload_gallery])
                    sample_gallery.select(set_prediction_image, inputs=[sample_gallery])
                with gr.Box():
                    input_text = gr.TextArea(
                        label="Classification Text",
                        placeholder="Please enter comma separated text",
                        interactive=True,
                    )

                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                with gr.Box():
                    output = gr.Label(value=None, label="Classification Results")

                submit_btn.click(predict, inputs=[input_text], outputs=[output])


app.launch(debug=True, show_error=True)