Kimata commited on
Commit
74bc616
·
1 Parent(s): bfe3d1b

update changes

Browse files
__pycache__/inference_2.cpython-39.pyc CHANGED
Binary files a/__pycache__/inference_2.cpython-39.pyc and b/__pycache__/inference_2.cpython-39.pyc differ
 
inference_2.py CHANGED
@@ -96,23 +96,10 @@ get_args(parser)
96
  args, remaining_args = parser.parse_known_args()
97
  assert remaining_args == [], remaining_args
98
 
99
- # multimodal = load_multimodal_model(args)
100
  spec_model = load_spec_modality_model(args)
101
 
102
- # print(f"Spec model is: {spec_model}")
103
-
104
  img_model = load_img_modality_model(args)
105
 
106
- # print(f"Image model is: {img_model}")
107
-
108
- # spec_in = torch.randn(1, 10_000)
109
- # rgb_in = torch.randn([1, 3, 256, 256])
110
-
111
- # rgb_out = img_model(rgb_in)
112
- # spec_out = spec_model(spec_in)
113
-
114
- # print(f"Img input shape is: {rgb_in.shape}, output shape: {rgb_out}")
115
- # print(f"Spec input shape is: {spec_in.shape}, output shape is: {spec_out.shape} output: {spec_out}")
116
 
117
  def preprocess_img(face):
118
  face = face / 255
@@ -129,7 +116,7 @@ def deepfakes_spec_predict(input_audio):
129
  x, _ = input_audio
130
  audio = preprocess_audio(x)
131
  spec_grads = spec_model.forward(audio)
132
- spec_grads_inv = np.exp(spec_grads.cpu().numpy().squeeze())
133
 
134
  # multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
135
 
 
96
  args, remaining_args = parser.parse_known_args()
97
  assert remaining_args == [], remaining_args
98
 
 
99
  spec_model = load_spec_modality_model(args)
100
 
 
 
101
  img_model = load_img_modality_model(args)
102
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  def preprocess_img(face):
105
  face = face / 255
 
116
  x, _ = input_audio
117
  audio = preprocess_audio(x)
118
  spec_grads = spec_model.forward(audio)
119
+ spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
120
 
121
  # multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
122