Spaces:
Runtime error
Runtime error
update changes
Browse files- __pycache__/inference.cpython-39.pyc +0 -0
- app.py +3 -3
- inference.py +33 -52
- requirements.txt +2 -1
__pycache__/inference.cpython-39.pyc
ADDED
Binary file (6.2 kB). View file
|
|
app.py
CHANGED
@@ -6,7 +6,7 @@ title="Multimodal deepfake detector"
|
|
6 |
description="Deepfake detection for videos, images and audio modalities."
|
7 |
|
8 |
|
9 |
-
video_interface = gr.Interface(
|
10 |
gr.Video(),
|
11 |
"text",
|
12 |
examples = ["videos/celeb_synthesis.mp4", "videos/real-1.mp4"],
|
@@ -14,14 +14,14 @@ video_interface = gr.Interface(pipeline.deepfakes_video_predict,
|
|
14 |
)
|
15 |
|
16 |
|
17 |
-
image_interface = gr.Interface(
|
18 |
gr.Image(),
|
19 |
"text",
|
20 |
examples = ["images/lady.jpg", "images/fake_image.jpg"],
|
21 |
cache_examples=False
|
22 |
)
|
23 |
|
24 |
-
audio_interface = gr.Interface(
|
25 |
gr.Audio(),
|
26 |
"text",
|
27 |
examples = ["audios/DF_E_2000027.flac", "audios/DF_E_2000031.flac"],
|
|
|
6 |
description="Deepfake detection for videos, images and audio modalities."
|
7 |
|
8 |
|
9 |
+
video_interface = gr.Interface(inference.deepfakes_video_predict,
|
10 |
gr.Video(),
|
11 |
"text",
|
12 |
examples = ["videos/celeb_synthesis.mp4", "videos/real-1.mp4"],
|
|
|
14 |
)
|
15 |
|
16 |
|
17 |
+
image_interface = gr.Interface(inference.deepfakes_image_predict,
|
18 |
gr.Image(),
|
19 |
"text",
|
20 |
examples = ["images/lady.jpg", "images/fake_image.jpg"],
|
21 |
cache_examples=False
|
22 |
)
|
23 |
|
24 |
+
audio_interface = gr.Interface(inference.deepfakes_spec_predict,
|
25 |
gr.Audio(),
|
26 |
"text",
|
27 |
examples = ["audios/DF_E_2000027.flac", "audios/DF_E_2000031.flac"],
|
inference.py
CHANGED
@@ -5,8 +5,6 @@ import argparse
|
|
5 |
import numpy as np
|
6 |
import torch.nn as nn
|
7 |
from models.TMC import ETMC
|
8 |
-
|
9 |
-
from torchsummary import summary
|
10 |
from models import image
|
11 |
|
12 |
#Set random seed for reproducibility.
|
@@ -90,66 +88,70 @@ def load_spec_modality_model(args):
|
|
90 |
spec_encoder.eval()
|
91 |
return spec_encoder
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def preprocess_img(face):
|
94 |
face = face / 255
|
95 |
face = cv2.resize(face, (256, 256))
|
96 |
-
face = face.
|
97 |
-
|
98 |
-
face_pt = torch.Tensor(face)
|
99 |
return face_pt
|
100 |
|
101 |
def preprocess_audio(audio_file):
|
102 |
-
|
103 |
-
audio_pt = torch.Tensor(audio)
|
104 |
return audio_pt
|
105 |
|
106 |
def deepfakes_spec_predict(input_audio):
|
107 |
-
|
108 |
-
|
109 |
-
#Load audio and multimodal model.
|
110 |
-
multimodal = load_multimodal_model()
|
111 |
-
spec_model = load_spec_modality_model()
|
112 |
-
|
113 |
spec_grads = spec_model.forward(audio)
|
114 |
multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
115 |
|
116 |
out = nn.Softmax()(multimodal_grads)
|
117 |
max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
118 |
max_value = out[max] #Actual value of the tensor.
|
|
|
119 |
|
120 |
if max_value > 0.5:
|
121 |
preds = round(100 - (max_value*100), 3)
|
122 |
-
text2 = f"The audio is REAL.
|
123 |
|
124 |
else:
|
125 |
preds = round(max_value*100, 3)
|
126 |
-
text2 = "The audio is FAKE.
|
127 |
|
128 |
-
return
|
129 |
|
130 |
def deepfakes_image_predict(input_image):
|
131 |
face = preprocess_img(input_image)
|
132 |
|
133 |
-
#Load image and multimodal model.
|
134 |
-
multimodal = load_multimodal_model()
|
135 |
-
img_model = load_img_modality_model()
|
136 |
-
|
137 |
img_grads = img_model.forward(face)
|
138 |
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
139 |
|
140 |
out = nn.Softmax()(multimodal_grads)
|
141 |
-
max = torch.argmax(out, dim
|
142 |
max_value = out[max] #Actual value of the tensor.
|
|
|
143 |
|
144 |
if max_value > 0.5:
|
145 |
preds = round(100 - (max_value*100), 3)
|
146 |
-
text2 = f"The image is REAL.
|
147 |
|
148 |
else:
|
149 |
preds = round(max_value*100, 3)
|
150 |
-
text2 = "The image is FAKE.
|
151 |
|
152 |
-
return
|
153 |
|
154 |
|
155 |
def preprocess_video(input_video, n_frames = 5):
|
@@ -181,9 +183,7 @@ def preprocess_video(input_video, n_frames = 5):
|
|
181 |
def deepfakes_video_predict(input_video):
|
182 |
'''Perform inference on a video.'''
|
183 |
video_frames = preprocess_video(input_video)
|
184 |
-
|
185 |
-
multimodal = load_multimodal_model()
|
186 |
-
img_model = load_img_modality_model()
|
187 |
real_grads = []
|
188 |
fake_grads = []
|
189 |
|
@@ -192,38 +192,19 @@ def deepfakes_video_predict(input_video):
|
|
192 |
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
193 |
|
194 |
out = nn.Softmax()(multimodal_grads)
|
195 |
-
real_grads.append(out
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
|
200 |
real_grads_mean = np.mean(real_grads)
|
201 |
fake_grads_mean = np.mean(fake_grads)
|
202 |
|
203 |
if real_grads_mean > fake_grads_mean:
|
204 |
res = round(real_grads_mean * 100, 3)
|
205 |
-
text = f"The video is REAL.
|
206 |
else:
|
207 |
res = round(100 - (real_grads_mean * 100), 3)
|
208 |
-
text = f"The video is FAKE.
|
209 |
return text
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
def cli_main():
|
216 |
-
parser = argparse.ArgumentParser(description="Train Models")
|
217 |
-
get_args(parser)
|
218 |
-
args, remaining_args = parser.parse_known_args()
|
219 |
-
assert remaining_args == [], remaining_args
|
220 |
-
# image_multimodal_inference(args)
|
221 |
-
# spec_multimodal_inference(args)
|
222 |
-
model_summary(args)
|
223 |
-
|
224 |
-
if __name__ == "__main__":
|
225 |
-
import warnings
|
226 |
-
warnings.filterwarnings("ignore")
|
227 |
-
cli_main()
|
228 |
-
|
229 |
-
|
|
|
5 |
import numpy as np
|
6 |
import torch.nn as nn
|
7 |
from models.TMC import ETMC
|
|
|
|
|
8 |
from models import image
|
9 |
|
10 |
#Set random seed for reproducibility.
|
|
|
88 |
spec_encoder.eval()
|
89 |
return spec_encoder
|
90 |
|
91 |
+
|
92 |
+
#Load models.
|
93 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
94 |
+
get_args(parser)
|
95 |
+
args, remaining_args = parser.parse_known_args()
|
96 |
+
assert remaining_args == [], remaining_args
|
97 |
+
|
98 |
+
multimodal = load_multimodal_model(args)
|
99 |
+
spec_model = load_spec_modality_model(args)
|
100 |
+
img_model = load_img_modality_model(args)
|
101 |
+
|
102 |
+
|
103 |
def preprocess_img(face):
|
104 |
face = face / 255
|
105 |
face = cv2.resize(face, (256, 256))
|
106 |
+
face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
|
107 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
|
|
108 |
return face_pt
|
109 |
|
110 |
def preprocess_audio(audio_file):
|
111 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
|
|
112 |
return audio_pt
|
113 |
|
114 |
def deepfakes_spec_predict(input_audio):
|
115 |
+
x, _ = input_audio
|
116 |
+
audio = preprocess_audio(x)
|
|
|
|
|
|
|
|
|
117 |
spec_grads = spec_model.forward(audio)
|
118 |
multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
119 |
|
120 |
out = nn.Softmax()(multimodal_grads)
|
121 |
max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
122 |
max_value = out[max] #Actual value of the tensor.
|
123 |
+
max_value = np.argmax(out[max].detach().numpy())
|
124 |
|
125 |
if max_value > 0.5:
|
126 |
preds = round(100 - (max_value*100), 3)
|
127 |
+
text2 = f"The audio is REAL."
|
128 |
|
129 |
else:
|
130 |
preds = round(max_value*100, 3)
|
131 |
+
text2 = f"The audio is FAKE."
|
132 |
|
133 |
+
return text2
|
134 |
|
135 |
def deepfakes_image_predict(input_image):
|
136 |
face = preprocess_img(input_image)
|
137 |
|
|
|
|
|
|
|
|
|
138 |
img_grads = img_model.forward(face)
|
139 |
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
140 |
|
141 |
out = nn.Softmax()(multimodal_grads)
|
142 |
+
max = torch.argmax(out, dim=-1) #Index of the max value in the tensor.
|
143 |
max_value = out[max] #Actual value of the tensor.
|
144 |
+
max_value = np.argmax(out[max].detach().numpy())
|
145 |
|
146 |
if max_value > 0.5:
|
147 |
preds = round(100 - (max_value*100), 3)
|
148 |
+
text2 = f"The image is REAL."
|
149 |
|
150 |
else:
|
151 |
preds = round(max_value*100, 3)
|
152 |
+
text2 = f"The image is FAKE."
|
153 |
|
154 |
+
return text2
|
155 |
|
156 |
|
157 |
def preprocess_video(input_video, n_frames = 5):
|
|
|
183 |
def deepfakes_video_predict(input_video):
|
184 |
'''Perform inference on a video.'''
|
185 |
video_frames = preprocess_video(input_video)
|
186 |
+
|
|
|
|
|
187 |
real_grads = []
|
188 |
fake_grads = []
|
189 |
|
|
|
192 |
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
193 |
|
194 |
out = nn.Softmax()(multimodal_grads)
|
195 |
+
real_grads.append(out.cpu().detach().numpy()[0])
|
196 |
+
print(f"Video out tensor shape is: {out.shape}, {out}")
|
197 |
+
|
198 |
+
fake_grads.append(out.cpu().detach().numpy()[0])
|
199 |
|
200 |
real_grads_mean = np.mean(real_grads)
|
201 |
fake_grads_mean = np.mean(fake_grads)
|
202 |
|
203 |
if real_grads_mean > fake_grads_mean:
|
204 |
res = round(real_grads_mean * 100, 3)
|
205 |
+
text = f"The video is REAL."
|
206 |
else:
|
207 |
res = round(100 - (real_grads_mean * 100), 3)
|
208 |
+
text = f"The video is FAKE."
|
209 |
return text
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -6,4 +6,5 @@ moviepy
|
|
6 |
librosa
|
7 |
ffmpeg
|
8 |
albumentations
|
9 |
-
opencv-python
|
|
|
|
6 |
librosa
|
7 |
ffmpeg
|
8 |
albumentations
|
9 |
+
opencv-python
|
10 |
+
torchsummary
|