Spaces:
Sleeping
Sleeping
import os | |
import openai | |
import sys | |
import gradio as gr | |
from IPython import get_ipython | |
import json | |
import requests | |
from tenacity import retry, wait_random_exponential, stop_after_attempt | |
from IPython import get_ipython | |
# from termcolor import colored # doesn't actually work in Colab ¯\_(ツ)_/¯ | |
GPT_MODEL = "gpt-3.5-turbo-1106" | |
openai.api_key = os.environ['OPENAI_API_KEY'] | |
messages=[] | |
def exec_python(cell): | |
ipython = get_ipython() | |
print(ipython) | |
result = ipython.run_cell(cell) | |
log = str(result.result) | |
if result.error_before_exec is not None: | |
log += f"\n{result.error_before_exec}" | |
if result.error_in_exec is not None: | |
log += f"\n{result.error_in_exec}" | |
prompt = """You are a genius math tutor, Python code expert, and a helpful assistant. | |
answer = {ans} | |
Please answer user questions very well with explanations and match it with the multiple choices question. | |
""".format(ans = log) | |
return log | |
# Now let's define the function specification: | |
functions = [ | |
{ | |
"name": "exec_python", | |
"description": "run cell in ipython and return the execution result.", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"cell": { | |
"type": "string", | |
"description": "Valid Python cell to execute.", | |
} | |
}, | |
"required": ["cell"], | |
}, | |
}, | |
] | |
# In order to run these functions automatically, we should maintain a dictionary: | |
functions_dict = { | |
"exec_python": exec_python, | |
} | |
def openai_api_calculate_cost(usage,model=GPT_MODEL): | |
pricing = { | |
# 'gpt-3.5-turbo-4k': { | |
# 'prompt': 0.0015, | |
# 'completion': 0.002, | |
# }, | |
# 'gpt-3.5-turbo-16k': { | |
# 'prompt': 0.003, | |
# 'completion': 0.004, | |
# }, | |
'gpt-3.5-turbo-1106': { | |
'prompt': 0.001, | |
'completion': 0.002, | |
}, | |
# 'gpt-4-1106-preview': { | |
# 'prompt': 0.01, | |
# 'completion': 0.03, | |
# }, | |
# 'gpt-4-32k': { | |
# 'prompt': 0.06, | |
# 'completion': 0.12, | |
# }, | |
# 'text-embedding-ada-002-v2': { | |
# 'prompt': 0.0001, | |
# 'completion': 0.0001, | |
# } | |
} | |
try: | |
model_pricing = pricing[model] | |
except KeyError: | |
raise ValueError("Invalid model specified") | |
prompt_cost = usage['prompt_tokens'] * model_pricing['prompt'] / 1000 | |
completion_cost = usage['completion_tokens'] * model_pricing['completion'] / 1000 | |
total_cost = prompt_cost + completion_cost | |
print(f"\nTokens used: {usage['prompt_tokens']:,} prompt + {usage['completion_tokens']:,} completion = {usage['total_tokens']:,} tokens") | |
print(f"Total cost for {model}: ${total_cost:.4f}\n") | |
return total_cost | |
def chat_completion_request(messages, functions=None, function_call=None, model=GPT_MODEL): | |
""" | |
This function sends a POST request to the OpenAI API to generate a chat completion. | |
Parameters: | |
- messages (list): A list of message objects. Each object should have a 'role' (either 'system', 'user', or 'assistant') and 'content' | |
(the content of the message). | |
- functions (list, optional): A list of function objects that describe the functions that the model can call. | |
- function_call (str or dict, optional): If it's a string, it can be either 'auto' (the model decides whether to call a function) or 'none' | |
(the model will not call a function). If it's a dict, it should describe the function to call. | |
- model (str): The ID of the model to use. | |
Returns: | |
- response (requests.Response): The response from the OpenAI API. If the request was successful, the response's JSON will contain the chat completion. | |
""" | |
# Set up the headers for the API request | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": "Bearer " + openai.api_key, | |
} | |
# Set up the data for the API request | |
json_data = {"model": model, "messages": messages} | |
# If functions were provided, add them to the data | |
if functions is not None: | |
json_data.update({"functions": functions}) | |
# If a function call was specified, add it to the data | |
if function_call is not None: | |
json_data.update({"function_call": function_call}) | |
# Send the API request | |
try: | |
response = requests.post( | |
"https://api.openai.com/v1/chat/completions", | |
headers=headers, | |
json=json_data, | |
) | |
return response | |
except Exception as e: | |
print("Unable to generate ChatCompletion response") | |
print(f"Exception: {e}") | |
return e | |
def first_call(init_prompt, user_input): | |
# Set up a conversation | |
messages = [] | |
messages.append({"role": "system", "content": init_prompt}) | |
# Write a user message that perhaps our function can handle...? | |
messages.append({"role": "user", "content": user_input}) | |
# Generate a response | |
chat_response = chat_completion_request( | |
messages, functions=functions | |
) | |
# Save the JSON to a variable | |
assistant_message = chat_response.json()["choices"][0]["message"] | |
# Append response to conversation | |
messages.append(assistant_message) | |
usage = chat_response.json()['usage'] | |
cost1 = openai_api_calculate_cost(usage) | |
# Let's see what we got back before continuing | |
return assistant_message, cost1 | |
def second_prompt_build(prompt, log): | |
prompt_second = prompt.format(ans = log) | |
return prompt_second | |
def function_call_process(assistant_message): | |
if assistant_message.get("function_call") != None: | |
# Retrieve the name of the relevant function | |
function_name = assistant_message["function_call"]["name"] | |
# Retrieve the arguments to send the function | |
# function_args = json.loads(assistant_message["function_call"]["arguments"], strict=False) | |
arg_dict = {'cell': assistant_message["function_call"]["arguments"]} | |
# print(function_args) | |
# Look up the function and call it with the provided arguments | |
result = functions_dict[function_name](**arg_dict) | |
return result | |
# print(result) | |
def second_call(prompt, result, function_name = "exec_python"): | |
# Add a new message to the conversation with the function result | |
messages.append({ | |
"role": "function", | |
"name": function_name, | |
"content": str(result), # Convert the result to a string | |
}) | |
# Call the model again to generate a user-facing message based on the function result | |
chat_response = chat_completion_request( | |
messages, functions=functions | |
) | |
assistant_message = chat_response.json()["choices"][0]["message"] | |
messages.append(assistant_message) | |
usage = chat_response.json()['usage'] | |
cost2 = openai_api_calculate_cost(usage) | |
# Print the final conversation | |
# pretty_print_conversation(messages) | |
return assistant_message, cost2 | |
def main_function(init_prompt, prompt, user_input): | |
first_call_result, cost1 = first_call(init_prompt, user_input) | |
function_call_process_result = function_call_process(first_call_result) | |
second_prompt_build_result = second_prompt_build(prompt, function_call_process_result) | |
second_call_result, cost2 = second_call(second_prompt_build_result, function_call_process_result) | |
return first_call_result, function_call_process_result, second_call_result, cost1, cost2 | |
def gradio_function(): | |
init_prompt = gr.Textbox(label="init_prompt (for 1st call)") | |
prompt = gr.Textbox(label="prompt (for 2nd call)") | |
user_input = gr.Textbox(label="User Input") | |
output_1st_call = gr.Textbox(label="output_1st_call") | |
output_fc_call = gr.Textbox(label="output_fc_call") | |
output_2nd_call = gr.Textbox(label="output_2nd_call") | |
cost = gr.Textbox(label="Cost 1") | |
cost2 = gr.Textbox(label="Cost 2") | |
iface = gr.Interface( | |
fn=main_function, | |
inputs=[init_prompt, prompt, user_input], | |
outputs=[output_1st_call, output_fc_call, output_2nd_call, cost, cost2], | |
title="Test", | |
description="Accuracy", | |
) | |
iface.launch(share=True) | |
if __name__ == "__main__": | |
gradio_function() |