Initial Commit
Browse files- Scraper.py +30 -0
- app.py +77 -0
- requirements.txt +5 -0
Scraper.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from newspaper import Article
|
2 |
+
|
3 |
+
"""
|
4 |
+
This script can be used to scrap article from a given link
|
5 |
+
|
6 |
+
Author: Rifky Bujana Bisri
|
7 |
+
email : [email protected]
|
8 |
+
"""
|
9 |
+
|
10 |
+
def Scrap(url):
|
11 |
+
"""
|
12 |
+
Scrap article from url
|
13 |
+
|
14 |
+
### Parameter\n
|
15 |
+
url : article url (dtype: `string`)\n
|
16 |
+
summarize : do you want to summarize the article? (dtype: `boolean`)
|
17 |
+
|
18 |
+
### Result\n
|
19 |
+
return the article text (dtype: `string`)
|
20 |
+
"""
|
21 |
+
|
22 |
+
article = Article(url, language='id')
|
23 |
+
article.download()
|
24 |
+
article.parse()
|
25 |
+
|
26 |
+
if not article.text:
|
27 |
+
print("Can't Scrap this article link")
|
28 |
+
return None
|
29 |
+
|
30 |
+
return article.text
|
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import re
|
4 |
+
import time
|
5 |
+
|
6 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer
|
7 |
+
from Scraper import Scrap
|
8 |
+
|
9 |
+
|
10 |
+
model_checkpoint = "Rifky/FND"
|
11 |
+
label = {0: "Fakta", 1: "Hoax"}
|
12 |
+
|
13 |
+
|
14 |
+
@st.cache(show_spinner=False, allow_output_mutation=True)
|
15 |
+
def load_model():
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, fast=True)
|
18 |
+
return Trainer(model=model), tokenizer
|
19 |
+
|
20 |
+
|
21 |
+
st.write('# Fake News Detection AI')
|
22 |
+
|
23 |
+
with st.spinner("Loading Model..."):
|
24 |
+
model, tokenizer = load_model()
|
25 |
+
|
26 |
+
user_input = st.text_area("Put article url or the full text", help="the text you want to analyze", height=200)
|
27 |
+
submit = st.button("submit")
|
28 |
+
|
29 |
+
def sigmoid(x):
|
30 |
+
return 1 / (1 + np.exp(-x))
|
31 |
+
|
32 |
+
if submit:
|
33 |
+
last_time = time.time()
|
34 |
+
|
35 |
+
text = ""
|
36 |
+
|
37 |
+
with st.spinner("Reading Article..."):
|
38 |
+
if user_input:
|
39 |
+
if user_input[:4] == 'http':
|
40 |
+
text = Scrap(user_input)
|
41 |
+
else:
|
42 |
+
text = user_input
|
43 |
+
|
44 |
+
if text:
|
45 |
+
text = re.sub(r'\n', ' ', text)
|
46 |
+
|
47 |
+
with st.spinner("Computing..."):
|
48 |
+
text_len = len(text.split(" "))
|
49 |
+
if text_len > 512:
|
50 |
+
texts = []
|
51 |
+
for i in range(text_len // 512):
|
52 |
+
texts.append(" ".join(text.split(" ")[i * 512:(i + 1) * 512]))
|
53 |
+
|
54 |
+
texts.append(" ".join(text.split(" ")[(text_len // 512) + 1:text_len % 512]))
|
55 |
+
|
56 |
+
for i in range(len(texts)):
|
57 |
+
texts[i] = tokenizer(texts[i], max_length=512, truncation=True, padding="max_length")
|
58 |
+
|
59 |
+
results = model.predict(texts)[0]
|
60 |
+
result = [0, 0]
|
61 |
+
for i in range(len(results)):
|
62 |
+
result[0] += sigmoid(results[i][0])
|
63 |
+
result[1] += sigmoid(results[i][1])
|
64 |
+
|
65 |
+
result[0] /= len(results)
|
66 |
+
result[1] /= len(results)
|
67 |
+
|
68 |
+
else:
|
69 |
+
text = tokenizer(text, max_length=512, truncation=True, padding="max_length")
|
70 |
+
result = model.predict([text])[0][0]
|
71 |
+
|
72 |
+
print (f'\nresult: {result}')
|
73 |
+
|
74 |
+
st.markdown(f"<small>Compute Finished in {int(time.time() - last_time)} seconds</small>", unsafe_allow_html=True)
|
75 |
+
|
76 |
+
prediction = np.argmax(result, axis=-1)
|
77 |
+
st.success(f"Prediction: {label[prediction]}")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
newspaper3k==0.2.8
|
2 |
+
numpy==1.23.1
|
3 |
+
streamlit==1.11.1
|
4 |
+
transformers==4.21.0
|
5 |
+
torch
|