Spaces:
Sleeping
Sleeping
added refereced functionality
Browse files- .gitignore +2 -1
- Dockerfile +1 -1
- app.py +89 -103
- requirements.txt +4 -6
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
.env
|
2 |
-
*.ipynb
|
|
|
|
1 |
.env
|
2 |
+
*.ipynb
|
3 |
+
__pycache__/*
|
Dockerfile
CHANGED
@@ -13,4 +13,4 @@ COPY --chown=user ./requirements.txt requirements.txt
|
|
13 |
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
|
15 |
COPY --chown=user . /app
|
16 |
-
CMD ["
|
|
|
13 |
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
|
15 |
COPY --chown=user . /app
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,18 +1,13 @@
|
|
1 |
-
from gevent import monkey
|
2 |
-
monkey.patch_all()
|
3 |
-
|
4 |
-
import nltk
|
5 |
-
nltk.download('punkt_tab')
|
6 |
-
|
7 |
import nltk
|
8 |
nltk.download('punkt_tab')
|
9 |
|
10 |
import os
|
11 |
from dotenv import load_dotenv
|
12 |
import asyncio
|
13 |
-
from
|
14 |
-
from
|
15 |
-
from
|
|
|
16 |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
17 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
18 |
from langchain_community.chat_message_histories import ChatMessageHistory
|
@@ -27,6 +22,7 @@ from langchain.retrievers import ContextualCompressionRetriever
|
|
27 |
from langchain_community.chat_models import ChatPerplexity
|
28 |
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
29 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
|
|
30 |
|
31 |
# Load environment variables
|
32 |
load_dotenv(".env")
|
@@ -41,14 +37,19 @@ os.environ['USER_AGENT'] = USER_AGENT
|
|
41 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
42 |
os.environ["TOKENIZERS_PARALLELISM"] = 'true'
|
43 |
|
44 |
-
# Initialize
|
45 |
-
app =
|
46 |
-
|
47 |
-
|
48 |
-
app.
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Function to initialize Pinecone connection
|
54 |
def initialize_pinecone(index_name: str):
|
@@ -59,7 +60,6 @@ def initialize_pinecone(index_name: str):
|
|
59 |
print(f"Error initializing Pinecone: {e}")
|
60 |
raise
|
61 |
|
62 |
-
|
63 |
##################################################
|
64 |
## Change down here
|
65 |
##################################################
|
@@ -71,8 +71,6 @@ bm25 = BM25Encoder().load("./mbzuai-policies.json")
|
|
71 |
##################################################
|
72 |
##################################################
|
73 |
|
74 |
-
# old_embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/gte-multilingual-base")
|
75 |
-
|
76 |
# Initialize models and retriever
|
77 |
embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True})
|
78 |
retriever = PineconeHybridSearchRetriever(
|
@@ -81,20 +79,15 @@ retriever = PineconeHybridSearchRetriever(
|
|
81 |
index=pinecone_index,
|
82 |
top_k=20,
|
83 |
alpha=0.5,
|
84 |
-
|
85 |
)
|
86 |
|
87 |
# Initialize LLM
|
88 |
-
|
89 |
-
llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=1024, max_retries=2)
|
90 |
-
|
91 |
|
92 |
# Initialize Reranker
|
93 |
-
# compressor = FlashrankRerank()
|
94 |
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
95 |
compressor = CrossEncoderReranker(model=model, top_n=20)
|
96 |
|
97 |
-
|
98 |
compression_retriever = ContextualCompressionRetriever(
|
99 |
base_compressor=compressor, base_retriever=retriever
|
100 |
)
|
@@ -115,33 +108,35 @@ contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
|
115 |
history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt)
|
116 |
|
117 |
# QA system prompt and chain
|
118 |
-
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively.
|
119 |
-
If you don't know the answer, simply state that you don't know.
|
120 |
-
Your answer should be in {language} language.
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
{context}
|
146 |
"""
|
147 |
qa_prompt = ChatPromptTemplate.from_messages(
|
@@ -151,7 +146,9 @@ qa_prompt = ChatPromptTemplate.from_messages(
|
|
151 |
("human", "{input}")
|
152 |
]
|
153 |
)
|
154 |
-
|
|
|
|
|
155 |
|
156 |
# Retrieval and Generative (RAG) Chain
|
157 |
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
@@ -159,9 +156,6 @@ rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chai
|
|
159 |
# Chat message history storage
|
160 |
store = {}
|
161 |
|
162 |
-
def clean_temporary_data():
|
163 |
-
store.clear()
|
164 |
-
|
165 |
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
166 |
if session_id not in store:
|
167 |
store[session_id] = ChatMessageHistory()
|
@@ -177,53 +171,45 @@ conversational_rag_chain = RunnableWithMessageHistory(
|
|
177 |
output_messages_key="answer",
|
178 |
)
|
179 |
|
180 |
-
# Function to handle WebSocket connection
|
181 |
-
@socketio.on('connect')
|
182 |
-
def handle_connect():
|
183 |
-
print(f"Client connected: {request.sid}")
|
184 |
-
emit('connection_response', {'message': 'Connected successfully.'})
|
185 |
-
|
186 |
-
# Function to handle WebSocket disconnection
|
187 |
-
@socketio.on('disconnect')
|
188 |
-
def handle_disconnect():
|
189 |
-
print(f"Client disconnected: {request.sid}")
|
190 |
-
clean_temporary_data()
|
191 |
-
|
192 |
-
# Function to handle WebSocket messages
|
193 |
-
@socketio.on('message')
|
194 |
-
def handle_message(data):
|
195 |
-
question = data.get('question')
|
196 |
-
language = data.get('language')
|
197 |
-
if "en" in language:
|
198 |
-
language = "English"
|
199 |
-
else:
|
200 |
-
language = "Arabic"
|
201 |
-
session_id = data.get('session_id', SESSION_ID_DEFAULT)
|
202 |
-
# chain = conversational_rag_chain.pick("answer")
|
203 |
-
|
204 |
-
# try:
|
205 |
-
# for chunk in conversational_rag_chain.stream(
|
206 |
-
# {"input": question, 'language': language},
|
207 |
-
# config={"configurable": {"session_id": session_id}},
|
208 |
-
# ):
|
209 |
-
# emit('response', chunk, room=request.sid)
|
210 |
-
# except Exception as e:
|
211 |
-
# print(f"Error during message handling: {e}")
|
212 |
-
# emit('response', "An error occurred while processing your request." + str(e), room=request.sid)
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
try:
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
# Home route
|
223 |
-
@app.
|
224 |
-
def
|
225 |
-
return
|
226 |
-
|
227 |
-
# Main function to run the app
|
228 |
-
if __name__ == '__main__':
|
229 |
-
socketio.run(app, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import nltk
|
2 |
nltk.download('punkt_tab')
|
3 |
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
import asyncio
|
7 |
+
from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect
|
8 |
+
from fastapi.responses import HTMLResponse
|
9 |
+
from fastapi.templating import Jinja2Templates
|
10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
12 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
13 |
from langchain_community.chat_message_histories import ChatMessageHistory
|
|
|
22 |
from langchain_community.chat_models import ChatPerplexity
|
23 |
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
24 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
25 |
+
from langchain_core.prompts import PromptTemplate
|
26 |
|
27 |
# Load environment variables
|
28 |
load_dotenv(".env")
|
|
|
37 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
38 |
os.environ["TOKENIZERS_PARALLELISM"] = 'true'
|
39 |
|
40 |
+
# Initialize FastAPI app and CORS
|
41 |
+
app = FastAPI()
|
42 |
+
origins = ["*"] # Adjust as needed
|
43 |
+
|
44 |
+
app.add_middleware(
|
45 |
+
CORSMiddleware,
|
46 |
+
allow_origins=origins,
|
47 |
+
allow_credentials=True,
|
48 |
+
allow_methods=["*"],
|
49 |
+
allow_headers=["*"],
|
50 |
+
)
|
51 |
+
|
52 |
+
templates = Jinja2Templates(directory="templates")
|
53 |
|
54 |
# Function to initialize Pinecone connection
|
55 |
def initialize_pinecone(index_name: str):
|
|
|
60 |
print(f"Error initializing Pinecone: {e}")
|
61 |
raise
|
62 |
|
|
|
63 |
##################################################
|
64 |
## Change down here
|
65 |
##################################################
|
|
|
71 |
##################################################
|
72 |
##################################################
|
73 |
|
|
|
|
|
74 |
# Initialize models and retriever
|
75 |
embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True})
|
76 |
retriever = PineconeHybridSearchRetriever(
|
|
|
79 |
index=pinecone_index,
|
80 |
top_k=20,
|
81 |
alpha=0.5,
|
|
|
82 |
)
|
83 |
|
84 |
# Initialize LLM
|
85 |
+
llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=512, max_retries=2)
|
|
|
|
|
86 |
|
87 |
# Initialize Reranker
|
|
|
88 |
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
89 |
compressor = CrossEncoderReranker(model=model, top_n=20)
|
90 |
|
|
|
91 |
compression_retriever = ContextualCompressionRetriever(
|
92 |
base_compressor=compressor, base_retriever=retriever
|
93 |
)
|
|
|
108 |
history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt)
|
109 |
|
110 |
# QA system prompt and chain
|
111 |
+
qa_system_prompt = """ You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively.
|
112 |
+
If you don't know the answer, simply state that you don't know.
|
113 |
+
Your answer should be in {language} language.
|
114 |
+
|
115 |
+
When responding to queries, follow these guidelines:
|
116 |
+
|
117 |
+
1. Provide Clear Answers:
|
118 |
+
- Based on the language of the question, you have to answer in that language. E.g., if the question is in English, then answer in English; if the question is in Arabic, you should answer in Arabic.
|
119 |
+
- Ensure the response directly addresses the query with accurate and relevant information.
|
120 |
+
- Do not give long answers. Provide detailed but concise responses.
|
121 |
+
|
122 |
+
2. Formatting for Readability:
|
123 |
+
- Provide the entire response in proper markdown format.
|
124 |
+
- Use structured Maekdown elements such as headings, subheading, lists, tables, and links.
|
125 |
+
- Use emaphsis on headings, important texts and phrases.
|
126 |
+
|
127 |
+
3. Proper Citations and References:
|
128 |
+
- ALWAYS INCLUDE SOURCES URLs where users can verify information or explore further.
|
129 |
+
- Use inline citations with embed referenced source link in the format [1], [2], etc., in the response to reference sources.
|
130 |
+
- ALWAYS PROVIDE "References" SECTION AT THE END OF RESPONSE.
|
131 |
+
- In the "References" section, list the referenced sources with their urls in the following format
|
132 |
+
'References
|
133 |
+
[1] Heading 1[Source 1 url] \
|
134 |
+
[2] Heading 2[Source 2 url] \
|
135 |
+
[3] Heading 3[Source 2 url] \
|
136 |
+
'
|
137 |
+
|
138 |
+
FOLLOW ALL THE GIVEN INSTRUCTIONS, FAILURE TO DO SO WILL RESULT IN TERMINATION OF THE CHAT.
|
139 |
+
|
140 |
{context}
|
141 |
"""
|
142 |
qa_prompt = ChatPromptTemplate.from_messages(
|
|
|
146 |
("human", "{input}")
|
147 |
]
|
148 |
)
|
149 |
+
|
150 |
+
document_prompt = PromptTemplate(input_variables=["page_content", "source"], template="{page_content} \n\n Source: {source}")
|
151 |
+
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt, document_prompt=document_prompt)
|
152 |
|
153 |
# Retrieval and Generative (RAG) Chain
|
154 |
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
|
|
156 |
# Chat message history storage
|
157 |
store = {}
|
158 |
|
|
|
|
|
|
|
159 |
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
160 |
if session_id not in store:
|
161 |
store[session_id] = ChatMessageHistory()
|
|
|
171 |
output_messages_key="answer",
|
172 |
)
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
# WebSocket endpoint with streaming
|
176 |
+
@app.websocket("/ws")
|
177 |
+
async def websocket_endpoint(websocket: WebSocket):
|
178 |
+
await websocket.accept()
|
179 |
+
print(f"Client connected: {websocket.client}")
|
180 |
+
session_id = None
|
181 |
try:
|
182 |
+
while True:
|
183 |
+
data = await websocket.receive_json()
|
184 |
+
question = data.get('question')
|
185 |
+
language = data.get('language')
|
186 |
+
if "en" in language:
|
187 |
+
language = "English"
|
188 |
+
else:
|
189 |
+
language = "Arabic"
|
190 |
+
session_id = data.get('session_id', SESSION_ID_DEFAULT)
|
191 |
+
# Process the question
|
192 |
+
try:
|
193 |
+
# Define an async generator for streaming
|
194 |
+
async def stream_response():
|
195 |
+
async for chunk in conversational_rag_chain.astream(
|
196 |
+
{"input": question, 'language': language},
|
197 |
+
config={"configurable": {"session_id": session_id}}
|
198 |
+
):
|
199 |
+
# Send each chunk to the client
|
200 |
+
if "answer" in chunk:
|
201 |
+
await websocket.send_json({'response': chunk['answer']})
|
202 |
+
|
203 |
+
await stream_response()
|
204 |
+
except Exception as e:
|
205 |
+
print(f"Error during message handling: {e}")
|
206 |
+
await websocket.send_json({'response': "Something went wrong, Please try again.."})
|
207 |
+
except WebSocketDisconnect:
|
208 |
+
print(f"Client disconnected: {websocket.client}")
|
209 |
+
if session_id:
|
210 |
+
store.pop(session_id, None)
|
211 |
|
212 |
# Home route
|
213 |
+
@app.get("/", response_class=HTMLResponse)
|
214 |
+
async def read_index(request: Request):
|
215 |
+
return templates.TemplateResponse("chat.html", {"request": request})
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -5,11 +5,9 @@ langchain-huggingface
|
|
5 |
pinecone
|
6 |
pinecone-text
|
7 |
flashrank
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
gevent
|
13 |
-
gevent-websocket
|
14 |
openai
|
15 |
einops
|
|
|
5 |
pinecone
|
6 |
pinecone-text
|
7 |
flashrank
|
8 |
+
fastapi>=0.68.0
|
9 |
+
uvicorn[standard]>=0.15.0
|
10 |
+
websockets>=10.0
|
11 |
+
python-multipart>=0.0.5
|
|
|
|
|
12 |
openai
|
13 |
einops
|