Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
from transformers import AutoModel, AutoTokenizer | |
import os | |
import base64 | |
import io | |
import uuid | |
import time | |
import shutil | |
from pathlib import Path | |
import re | |
import easyocr | |
tokenizer = AutoTokenizer.from_pretrained('RufusRubin777/GOT-OCR2_0_CPU', trust_remote_code=True, device_map='cpu') | |
model = AutoModel.from_pretrained('RufusRubin777/GOT-OCR2_0_CPU', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cpu', use_safetensors=True) | |
model = model.eval().cpu() | |
reader = easyocr.Reader(['hi']) | |
UPLOAD_FOLDER = "./uploads" | |
RESULTS_FOLDER = "./results" | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
if not os.path.exists(folder): | |
os.makedirs(folder) | |
def image_to_base64(image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
def run_GOT(image, language): | |
unique_id = str(uuid.uuid4()) | |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") | |
shutil.copy(image, image_path) | |
try: | |
english_extraction = model.chat(tokenizer, image_path, ocr_type='ocr') | |
hindi_extraction = reader.readtext(image) | |
hindi_extract = '' | |
for x in hindi_extraction: | |
hindi_extract += x[1] + '\n' | |
return english_extraction + '\n' + hindi_extract | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
finally: | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
def search_keyword(text, keyword): | |
if not keyword: | |
return "<p>Please enter a keyword to search.</p>" | |
# Convert text and keyword to lowercase for case-insensitive search | |
text_lower = text.lower() | |
keyword_lower = keyword.lower() | |
# Find all occurrences of the keyword | |
matches = list(re.finditer(re.escape(keyword_lower), text_lower)) | |
if not matches: | |
return f"<p>Keyword '{keyword}' not found in the text.</p>" | |
# Highlight all occurrences of the keyword | |
result = [] | |
last_end = 0 | |
for match in matches: | |
start, end = match.span() | |
result.append(text[last_end:start]) | |
result.append(f'<mark>{text[start:end]}</mark>') | |
last_end = end | |
result.append(text[last_end:]) | |
highlighted_text = ''.join(result) | |
# Wrap the result in a scrollable div with some basic styling | |
return f""" | |
<div style="max-height: 300px; overflow-y: auto; border: 1px solid #ccc; padding: 10px; background-color: #f9f9f9;"> | |
<p>{highlighted_text}</p> | |
</div> | |
<p>Found {len(matches)} occurrence(s) of '{keyword}'</p> | |
""" | |
def cleanup_old_files(): | |
current_time = time.time() | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
for file_path in Path(folder).glob('*'): | |
if current_time - file_path.stat().st_mtime > 3600: # 1 hour | |
file_path.unlink() | |
title_html = """ | |
<h1><span class="gradient-text" id="text">IIT Roorkee - OCR and Document Search Web Application Prototype (General OCR Theory (GOT), a 580M end-to-end OCR 2.0 model.)</span></h1> | |
""" | |
with gr.Blocks() as scan_master_web_app: | |
gr.HTML(title_html) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="filepath", label="Upload your image") | |
submit_button = gr.Button("Extract Text") | |
ocr_result = gr.Textbox(label="Extracted Text") | |
with gr.Column(): | |
keyword = gr.Textbox(label="Search a keyword in the extracted text") | |
search_button = gr.Button("Search Keyword") | |
search_result = gr.HTML(label="Search result") | |
submit_button.click( | |
run_GOT, | |
inputs=[image_input], | |
outputs=[ocr_result] | |
) | |
search_button.click( | |
search_keyword, | |
inputs=[ocr_result, keyword], | |
outputs=[search_result] | |
) | |
if __name__ == "__main__": | |
cleanup_old_files() | |
scan_master_web_app.launch() |