Spaces:
Runtime error
Runtime error
Johannes
commited on
Commit
·
eea614c
1
Parent(s):
a4c0ed2
initial changes
Browse files- README.md +4 -4
- __pycache__/controlnet_inpaint.cpython-310.pyc +0 -0
- app.py +194 -0
- requirements.txt +10 -0
- sam_vit_h_4b8939.pth +3 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.28.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: ControlNet+SAM WildSynth
|
3 |
+
emoji: 🦬
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.28.0
|
8 |
app_file: app.py
|
__pycache__/controlnet_inpaint.cpython-310.pyc
ADDED
Binary file (36.1 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import jax
|
5 |
+
import jax.numpy as jnp
|
6 |
+
from diffusers import StableDiffusionInpaintPipeline
|
7 |
+
from flax.jax_utils import replicate
|
8 |
+
from flax.training.common_utils import shard
|
9 |
+
from PIL import Image
|
10 |
+
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
|
11 |
+
from diffusers import (
|
12 |
+
UniPCMultistepScheduler,
|
13 |
+
FlaxStableDiffusionControlNetPipeline,
|
14 |
+
FlaxControlNetModel,
|
15 |
+
)
|
16 |
+
|
17 |
+
import colorsys
|
18 |
+
|
19 |
+
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
20 |
+
model_type = "vit_h"
|
21 |
+
device = "cpu"
|
22 |
+
|
23 |
+
|
24 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
25 |
+
sam.to(device=device)
|
26 |
+
predictor = SamPredictor(sam)
|
27 |
+
mask_generator = SamAutomaticMaskGenerator(sam)
|
28 |
+
|
29 |
+
|
30 |
+
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
31 |
+
"mfidabel/controlnet-segment-anything", dtype=jnp.float32
|
32 |
+
)
|
33 |
+
|
34 |
+
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
|
35 |
+
"runwayml/stable-diffusion-v1-5",
|
36 |
+
controlnet=controlnet,
|
37 |
+
revision="flax",
|
38 |
+
dtype=jnp.bfloat16,
|
39 |
+
)
|
40 |
+
|
41 |
+
params["controlnet"] = controlnet_params
|
42 |
+
p_params = replicate(params)
|
43 |
+
|
44 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
45 |
+
pipe = pipe.to(device)
|
46 |
+
|
47 |
+
|
48 |
+
with gr.Blocks() as demo:
|
49 |
+
gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation")
|
50 |
+
gr.Markdown(
|
51 |
+
"""
|
52 |
+
We have trained a JAX ControlNet model with
|
53 |
+
To try the demo, upload an image and select object(s) you want to inpaint.
|
54 |
+
Write a prompt & a negative prompt to control the inpainting.
|
55 |
+
Click on the "Submit" button to inpaint the selected object(s).
|
56 |
+
Check "Background" to inpaint the background instead of the selected object(s).
|
57 |
+
|
58 |
+
If the demo is slow, clone the space to your own HF account and run on a GPU.
|
59 |
+
"""
|
60 |
+
)
|
61 |
+
with gr.Row():
|
62 |
+
input_img = gr.Image(label="Input")
|
63 |
+
mask_img = gr.Image(label="Mask", interactive=False)
|
64 |
+
output_img = gr.Image(label="Output", interactive=False)
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
prompt_text = gr.Textbox(lines=1, label="Prompt")
|
68 |
+
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt")
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
submit = gr.Button("Submit")
|
72 |
+
clear = gr.Button("Clear")
|
73 |
+
|
74 |
+
def generate_mask(image, evt: gr.SelectData):
|
75 |
+
predictor.set_image(image)
|
76 |
+
input_point = np.array([120, 21])
|
77 |
+
input_label = np.ones(input_point.shape[0])
|
78 |
+
mask, _, _ = predictor.predict(
|
79 |
+
point_coords=input_point,
|
80 |
+
point_labels=input_label,
|
81 |
+
multimask_output=False,
|
82 |
+
)
|
83 |
+
|
84 |
+
# clear torch cache
|
85 |
+
torch.cuda.empty_cache()
|
86 |
+
mask = Image.fromarray(mask[0, :, :])
|
87 |
+
segs = mask_generator.generate(image)
|
88 |
+
boolean_masks = [s["segmentation"] for s in segs]
|
89 |
+
finseg = np.zeros(
|
90 |
+
(boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8
|
91 |
+
)
|
92 |
+
# Loop over the boolean masks and assign a unique color to each class
|
93 |
+
for class_id, boolean_mask in enumerate(boolean_masks):
|
94 |
+
hue = class_id * 1.0 / len(boolean_masks)
|
95 |
+
rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1))
|
96 |
+
rgb_mask = np.zeros(
|
97 |
+
(boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8
|
98 |
+
)
|
99 |
+
rgb_mask[:, :, 0] = boolean_mask * rgb[0]
|
100 |
+
rgb_mask[:, :, 1] = boolean_mask * rgb[1]
|
101 |
+
rgb_mask[:, :, 2] = boolean_mask * rgb[2]
|
102 |
+
finseg += rgb_mask
|
103 |
+
|
104 |
+
torch.cuda.empty_cache()
|
105 |
+
|
106 |
+
return mask, finseg
|
107 |
+
|
108 |
+
def infer(
|
109 |
+
image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
|
110 |
+
):
|
111 |
+
try:
|
112 |
+
rng = jax.random.PRNGKey(int(seed))
|
113 |
+
num_inference_steps = int(num_inference_steps)
|
114 |
+
image = Image.fromarray(image, mode="RGB")
|
115 |
+
num_samples = max(jax.device_count(), int(num_samples))
|
116 |
+
p_rng = jax.random.split(rng, jax.device_count())
|
117 |
+
|
118 |
+
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
|
119 |
+
negative_prompt_ids = pipe.prepare_text_inputs(
|
120 |
+
[negative_prompts] * num_samples
|
121 |
+
)
|
122 |
+
processed_image = pipe.prepare_image_inputs([image] * num_samples)
|
123 |
+
|
124 |
+
prompt_ids = shard(prompt_ids)
|
125 |
+
negative_prompt_ids = shard(negative_prompt_ids)
|
126 |
+
processed_image = shard(processed_image)
|
127 |
+
|
128 |
+
output = pipe(
|
129 |
+
prompt_ids=prompt_ids,
|
130 |
+
image=processed_image,
|
131 |
+
params=p_params,
|
132 |
+
prng_seed=p_rng,
|
133 |
+
num_inference_steps=num_inference_steps,
|
134 |
+
neg_prompt_ids=negative_prompt_ids,
|
135 |
+
jit=True,
|
136 |
+
).images
|
137 |
+
|
138 |
+
del negative_prompt_ids
|
139 |
+
del processed_image
|
140 |
+
del prompt_ids
|
141 |
+
|
142 |
+
output = output.reshape((num_samples,) + output.shape[-3:])
|
143 |
+
final_image = [np.array(x * 255, dtype=np.uint8) for x in output]
|
144 |
+
print(output.shape)
|
145 |
+
del output
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
print("Error: " + str(e))
|
149 |
+
final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples
|
150 |
+
finally:
|
151 |
+
gc.collect()
|
152 |
+
return final_image
|
153 |
+
|
154 |
+
def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg):
|
155 |
+
img = None
|
156 |
+
mask = None
|
157 |
+
seg = None
|
158 |
+
out = None
|
159 |
+
prompt = ""
|
160 |
+
neg_prompt = ""
|
161 |
+
bg = False
|
162 |
+
return img, mask, seg, out, prompt, neg_prompt, bg
|
163 |
+
|
164 |
+
input_img.change(
|
165 |
+
generate_mask,
|
166 |
+
inputs=[input_img],
|
167 |
+
outputs=[mask_img],
|
168 |
+
)
|
169 |
+
submit.click(
|
170 |
+
infer,
|
171 |
+
inputs=[mask_img, prompt_text, negative_prompt_text],
|
172 |
+
outputs=[output_img],
|
173 |
+
)
|
174 |
+
clear.click(
|
175 |
+
_clear,
|
176 |
+
inputs=[
|
177 |
+
input_img,
|
178 |
+
mask_img,
|
179 |
+
output_img,
|
180 |
+
prompt_text,
|
181 |
+
negative_prompt_text,
|
182 |
+
],
|
183 |
+
outputs=[
|
184 |
+
input_img,
|
185 |
+
mask_img,
|
186 |
+
output_img,
|
187 |
+
prompt_text,
|
188 |
+
negative_prompt_text,
|
189 |
+
],
|
190 |
+
)
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
demo.queue()
|
194 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
git+https://github.com/facebookresearch/segment-anything.git
|
4 |
+
transformers
|
5 |
+
flax
|
6 |
+
jax[cuda11_pip]
|
7 |
+
-f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
|
8 |
+
jaxlib
|
9 |
+
git+https://github.com/huggingface/diffusers@main
|
10 |
+
opencv-python
|
sam_vit_h_4b8939.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e
|
3 |
+
size 2564550879
|