Spaces:
No application file
No application file
File size: 27,620 Bytes
5d26c71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "4f403af3",
"metadata": {},
"outputs": [],
"source": [
"#Source: https://medium.com/dataseries/convolutional-autoencoder-in-pytorch-on-mnist-dataset-d65145c132ac"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "add961d3",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt # plotting library\n",
"from sklearn.model_selection import train_test_split\n",
"import numpy as np # this module is useful to work with numerical arrays\n",
"import pandas as pd \n",
"import random \n",
"import os\n",
"import torch\n",
"import torchvision\n",
"from torchvision import transforms, datasets\n",
"from torch.utils.data import DataLoader,random_split\n",
"from torch import nn\n",
"import torch.nn.functional as F\n",
"import torch.optim as optim"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "7f5313b5",
"metadata": {},
"outputs": [],
"source": [
"def find_candidate_images(images_path):\n",
" \"\"\"\n",
" Finds all candidate images in the given folder and its sub-folders.\n",
"\n",
" Returns:\n",
" images: a list of absolute paths to the discovered images.\n",
" \"\"\"\n",
" images = []\n",
" for root, dirs, files in os.walk(images_path):\n",
" for name in files:\n",
" file_path = os.path.abspath(os.path.join(root, name))\n",
" if ((os.path.splitext(name)[1]).lower() in ['.jpg','.png','.jpeg']):\n",
" images.append(file_path)\n",
" return images"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "1e7f0096",
"metadata": {},
"outputs": [],
"source": [
"class MyDataset(torch.utils.data.Dataset):\n",
" def __init__(self, img_list, augmentations):\n",
" super(MyDataset, self).__init__()\n",
" self.img_list = img_list\n",
" self.augmentations = augmentations\n",
"\n",
" def __len__(self):\n",
" return len(self.img_list)\n",
"\n",
" def __getitem__(self, idx):\n",
" img = self.img_list[idx]\n",
" return self.augmentations(img)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "f846b86c",
"metadata": {},
"outputs": [],
"source": [
"images = find_candidate_images('../SD_sample_f_m_pt2')"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "da000292",
"metadata": {},
"outputs": [],
"source": [
"transform = transforms.Compose([\n",
"transforms.ToTensor(),\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "d8f46911",
"metadata": {},
"outputs": [],
"source": [
"data = MyDataset(images, transform)\n",
"dataset_iterator = DataLoader(data, batch_size=1)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "05504c87",
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "pic should be PIL Image or ndarray. Got <class 'str'>",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Input \u001b[0;32mIn [56]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m train_images, test_images \u001b[38;5;241m=\u001b[39m \u001b[43mtrain_test_split\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtest_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.33\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m42\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;28mlen\u001b[39m(train_images))\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;28mlen\u001b[39m(test_images))\n",
"File \u001b[0;32m~/miniconda3/envs/stablediffusion/lib/python3.9/site-packages/sklearn/model_selection/_split.py:2471\u001b[0m, in \u001b[0;36mtrain_test_split\u001b[0;34m(test_size, train_size, random_state, shuffle, stratify, *arrays)\u001b[0m\n\u001b[1;32m 2467\u001b[0m cv \u001b[38;5;241m=\u001b[39m CVClass(test_size\u001b[38;5;241m=\u001b[39mn_test, train_size\u001b[38;5;241m=\u001b[39mn_train, random_state\u001b[38;5;241m=\u001b[39mrandom_state)\n\u001b[1;32m 2469\u001b[0m train, test \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(cv\u001b[38;5;241m.\u001b[39msplit(X\u001b[38;5;241m=\u001b[39marrays[\u001b[38;5;241m0\u001b[39m], y\u001b[38;5;241m=\u001b[39mstratify))\n\u001b[0;32m-> 2471\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2472\u001b[0m \u001b[43m \u001b[49m\u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_iterable\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2473\u001b[0m \u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43m_safe_indexing\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_safe_indexing\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtest\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43marrays\u001b[49m\n\u001b[1;32m 2474\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2475\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/stablediffusion/lib/python3.9/site-packages/sklearn/model_selection/_split.py:2473\u001b[0m, in \u001b[0;36m<genexpr>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 2467\u001b[0m cv \u001b[38;5;241m=\u001b[39m CVClass(test_size\u001b[38;5;241m=\u001b[39mn_test, train_size\u001b[38;5;241m=\u001b[39mn_train, random_state\u001b[38;5;241m=\u001b[39mrandom_state)\n\u001b[1;32m 2469\u001b[0m train, test \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(cv\u001b[38;5;241m.\u001b[39msplit(X\u001b[38;5;241m=\u001b[39marrays[\u001b[38;5;241m0\u001b[39m], y\u001b[38;5;241m=\u001b[39mstratify))\n\u001b[1;32m 2471\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(\n\u001b[1;32m 2472\u001b[0m chain\u001b[38;5;241m.\u001b[39mfrom_iterable(\n\u001b[0;32m-> 2473\u001b[0m (\u001b[43m_safe_indexing\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m)\u001b[49m, _safe_indexing(a, test)) \u001b[38;5;28;01mfor\u001b[39;00m a \u001b[38;5;129;01min\u001b[39;00m arrays\n\u001b[1;32m 2474\u001b[0m )\n\u001b[1;32m 2475\u001b[0m )\n",
"File \u001b[0;32m~/miniconda3/envs/stablediffusion/lib/python3.9/site-packages/sklearn/utils/__init__.py:363\u001b[0m, in \u001b[0;36m_safe_indexing\u001b[0;34m(X, indices, axis)\u001b[0m\n\u001b[1;32m 361\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _array_indexing(X, indices, indices_dtype, axis\u001b[38;5;241m=\u001b[39maxis)\n\u001b[1;32m 362\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 363\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_list_indexing\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindices\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindices_dtype\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/stablediffusion/lib/python3.9/site-packages/sklearn/utils/__init__.py:217\u001b[0m, in \u001b[0;36m_list_indexing\u001b[0;34m(X, key, key_dtype)\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(compress(X, key))\n\u001b[1;32m 216\u001b[0m \u001b[38;5;66;03m# key is a integer array-like of key\u001b[39;00m\n\u001b[0;32m--> 217\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [X[idx] \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m key]\n",
"File \u001b[0;32m~/miniconda3/envs/stablediffusion/lib/python3.9/site-packages/sklearn/utils/__init__.py:217\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(compress(X, key))\n\u001b[1;32m 216\u001b[0m \u001b[38;5;66;03m# key is a integer array-like of key\u001b[39;00m\n\u001b[0;32m--> 217\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [\u001b[43mX\u001b[49m\u001b[43m[\u001b[49m\u001b[43midx\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m key]\n",
"Input \u001b[0;32mIn [49]\u001b[0m, in \u001b[0;36mMyDataset.__getitem__\u001b[0;34m(self, idx)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__getitem__\u001b[39m(\u001b[38;5;28mself\u001b[39m, idx):\n\u001b[1;32m 11\u001b[0m img \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mimg_list[idx]\n\u001b[0;32m---> 12\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43maugmentations\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimg\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/stablediffusion/lib/python3.9/site-packages/torchvision/transforms/transforms.py:95\u001b[0m, in \u001b[0;36mCompose.__call__\u001b[0;34m(self, img)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, img):\n\u001b[1;32m 94\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m t \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransforms:\n\u001b[0;32m---> 95\u001b[0m img \u001b[38;5;241m=\u001b[39m \u001b[43mt\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimg\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m img\n",
"File \u001b[0;32m~/miniconda3/envs/stablediffusion/lib/python3.9/site-packages/torchvision/transforms/transforms.py:135\u001b[0m, in \u001b[0;36mToTensor.__call__\u001b[0;34m(self, pic)\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, pic):\n\u001b[1;32m 128\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 129\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;124;03m pic (PIL Image or numpy.ndarray): Image to be converted to tensor.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[38;5;124;03m Tensor: Converted image.\u001b[39;00m\n\u001b[1;32m 134\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 135\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mF\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_tensor\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpic\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/stablediffusion/lib/python3.9/site-packages/torchvision/transforms/functional.py:137\u001b[0m, in \u001b[0;36mto_tensor\u001b[0;34m(pic)\u001b[0m\n\u001b[1;32m 135\u001b[0m _log_api_usage_once(to_tensor)\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (F_pil\u001b[38;5;241m.\u001b[39m_is_pil_image(pic) \u001b[38;5;129;01mor\u001b[39;00m _is_numpy(pic)):\n\u001b[0;32m--> 137\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpic should be PIL Image or ndarray. Got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(pic)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 139\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _is_numpy(pic) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _is_numpy_image(pic):\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpic should be 2/3 dimensional. Got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpic\u001b[38;5;241m.\u001b[39mndim\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m dimensions.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"\u001b[0;31mTypeError\u001b[0m: pic should be PIL Image or ndarray. Got <class 'str'>"
]
}
],
"source": [
"train_images, test_images = train_test_split(data, test_size=0.33, random_state=42)\n",
"print(len(train_images))\n",
"print(len(test_images))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "669f82ab",
"metadata": {},
"outputs": [],
"source": [
"m=len(train_images)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "e962953c",
"metadata": {},
"outputs": [],
"source": [
"train_data, val_data = random_split(train_images, [int(m-m*0.2), int(m*0.2)])\n",
"test_dataset = test_images"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "16a8e2a1",
"metadata": {},
"outputs": [],
"source": [
"train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size)\n",
"valid_loader = torch.utils.data.DataLoader(val_data, batch_size=batch_size)\n",
"test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,shuffle=True)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "07403239",
"metadata": {},
"outputs": [],
"source": [
"class Encoder(nn.Module):\n",
" \n",
" def __init__(self, encoded_space_dim,fc2_input_dim):\n",
" super().__init__()\n",
" \n",
" ### Convolutional section\n",
" self.encoder_cnn = nn.Sequential(\n",
" nn.Conv2d(1, 8, 3, stride=2, padding=1),\n",
" nn.ReLU(True),\n",
" nn.Conv2d(8, 16, 3, stride=2, padding=1),\n",
" nn.BatchNorm2d(16),\n",
" nn.ReLU(True),\n",
" nn.Conv2d(16, 32, 3, stride=2, padding=0),\n",
" nn.ReLU(True)\n",
" )\n",
" \n",
" ### Flatten layer\n",
" self.flatten = nn.Flatten(start_dim=1)\n",
"### Linear section\n",
" self.encoder_lin = nn.Sequential(\n",
" nn.Linear(3 * 3 * 32, 128),\n",
" nn.ReLU(True),\n",
" nn.Linear(128, encoded_space_dim)\n",
" )\n",
" \n",
" def forward(self, x):\n",
" x = self.encoder_cnn(x)\n",
" x = self.flatten(x)\n",
" x = self.encoder_lin(x)\n",
" return x\n",
"class Decoder(nn.Module):\n",
" \n",
" def __init__(self, encoded_space_dim,fc2_input_dim):\n",
" super().__init__()\n",
" self.decoder_lin = nn.Sequential(\n",
" nn.Linear(encoded_space_dim, 128),\n",
" nn.ReLU(True),\n",
" nn.Linear(128, 3 * 3 * 32),\n",
" nn.ReLU(True)\n",
" )\n",
"\n",
" self.unflatten = nn.Unflatten(dim=1, \n",
" unflattened_size=(32, 3, 3))\n",
"\n",
" self.decoder_conv = nn.Sequential(\n",
" nn.ConvTranspose2d(32, 16, 3, \n",
" stride=2, output_padding=0),\n",
" nn.BatchNorm2d(16),\n",
" nn.ReLU(True),\n",
" nn.ConvTranspose2d(16, 8, 3, stride=2, \n",
" padding=1, output_padding=1),\n",
" nn.BatchNorm2d(8),\n",
" nn.ReLU(True),\n",
" nn.ConvTranspose2d(8, 1, 3, stride=2, \n",
" padding=1, output_padding=1)\n",
" )\n",
" \n",
" def forward(self, x):\n",
" x = self.decoder_lin(x)\n",
" x = self.unflatten(x)\n",
" x = self.decoder_conv(x)\n",
" x = torch.sigmoid(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "fedfd708",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Selected device: cuda\n"
]
},
{
"data": {
"text/plain": [
"Decoder(\n",
" (decoder_lin): Sequential(\n",
" (0): Linear(in_features=4, out_features=128, bias=True)\n",
" (1): ReLU(inplace=True)\n",
" (2): Linear(in_features=128, out_features=288, bias=True)\n",
" (3): ReLU(inplace=True)\n",
" )\n",
" (unflatten): Unflatten(dim=1, unflattened_size=(32, 3, 3))\n",
" (decoder_conv): Sequential(\n",
" (0): ConvTranspose2d(32, 16, kernel_size=(3, 3), stride=(2, 2))\n",
" (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (2): ReLU(inplace=True)\n",
" (3): ConvTranspose2d(16, 8, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))\n",
" (4): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (5): ReLU(inplace=True)\n",
" (6): ConvTranspose2d(8, 1, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))\n",
" )\n",
")"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### Define the loss function\n",
"loss_fn = torch.nn.MSELoss()\n",
"\n",
"### Define an optimizer (both for the encoder and the decoder!)\n",
"lr= 0.001\n",
"\n",
"### Set the random seed for reproducible results\n",
"torch.manual_seed(0)\n",
"\n",
"### Initialize the two networks\n",
"d = 4\n",
"\n",
"#model = Autoencoder(encoded_space_dim=encoded_space_dim)\n",
"encoder = Encoder(encoded_space_dim=d,fc2_input_dim=128)\n",
"decoder = Decoder(encoded_space_dim=d,fc2_input_dim=128)\n",
"params_to_optimize = [\n",
" {'params': encoder.parameters()},\n",
" {'params': decoder.parameters()}\n",
"]\n",
"\n",
"optim = torch.optim.Adam(params_to_optimize, lr=lr, weight_decay=1e-05)\n",
"\n",
"# Check if the GPU is available\n",
"device = torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",
"print(f'Selected device: {device}')\n",
"\n",
"# Move both the encoder and the decoder to the selected device\n",
"encoder.to(device)\n",
"decoder.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "bae32de2",
"metadata": {},
"outputs": [],
"source": [
"### Training function\n",
"def train_epoch(encoder, decoder, device, dataloader, loss_fn, optimizer):\n",
" # Set train mode for both the encoder and the decoder\n",
" encoder.train()\n",
" decoder.train()\n",
" train_loss = []\n",
" # Iterate the dataloader (we do not need the label values, this is unsupervised learning)\n",
" for image_batch, _ in dataloader: # with \"_\" we just ignore the labels (the second element of the dataloader tuple)\n",
" # Move tensor to the proper device\n",
" image_batch = image_batch.to(device)\n",
" # Encode data\n",
" encoded_data = encoder(image_batch)\n",
" # Decode data\n",
" decoded_data = decoder(encoded_data)\n",
" # Evaluate loss\n",
" loss = loss_fn(decoded_data, image_batch)\n",
" # Backward pass\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n",
" # Print batch loss\n",
" print('\\t partial train loss (single batch): %f' % (loss.data))\n",
" train_loss.append(loss.detach().cpu().numpy())\n",
"\n",
" return np.mean(train_loss)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "ff2ec5fd",
"metadata": {},
"outputs": [],
"source": [
"### Testing function\n",
"def test_epoch(encoder, decoder, device, dataloader, loss_fn):\n",
" # Set evaluation mode for encoder and decoder\n",
" encoder.eval()\n",
" decoder.eval()\n",
" with torch.no_grad(): # No need to track the gradients\n",
" # Define the lists to store the outputs for each batch\n",
" conc_out = []\n",
" conc_label = []\n",
" for image_batch, _ in dataloader:\n",
" # Move tensor to the proper device\n",
" image_batch = image_batch.to(device)\n",
" # Encode data\n",
" encoded_data = encoder(image_batch)\n",
" # Decode data\n",
" decoded_data = decoder(encoded_data)\n",
" # Append the network output and the original image to the lists\n",
" conc_out.append(decoded_data.cpu())\n",
" conc_label.append(image_batch.cpu())\n",
" # Create a single tensor with all the values in the lists\n",
" conc_out = torch.cat(conc_out)\n",
" conc_label = torch.cat(conc_label) \n",
" # Evaluate global loss\n",
" val_loss = loss_fn(conc_out, conc_label)\n",
" return val_loss.data"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "592ab5f1",
"metadata": {},
"outputs": [],
"source": [
"def plot_ae_outputs(encoder,decoder,n=10):\n",
" plt.figure(figsize=(16,4.5))\n",
" targets = test_dataset.targets.numpy()\n",
" t_idx = {i:np.where(targets==i)[0][0] for i in range(n)}\n",
" for i in range(n):\n",
" ax = plt.subplot(2,n,i+1)\n",
" img = test_dataset[t_idx[i]][0].unsqueeze(0).to(device)\n",
" encoder.eval()\n",
" decoder.eval()\n",
" with torch.no_grad():\n",
" rec_img = decoder(encoder(img))\n",
" plt.imshow(img.cpu().squeeze().numpy(), cmap='gist_gray')\n",
" ax.get_xaxis().set_visible(False)\n",
" ax.get_yaxis().set_visible(False) \n",
" if i == n//2:\n",
" ax.set_title('Original images')\n",
" ax = plt.subplot(2, n, i + 1 + n)\n",
" plt.imshow(rec_img.cpu().squeeze().numpy(), cmap='gist_gray') \n",
" ax.get_xaxis().set_visible(False)\n",
" ax.get_yaxis().set_visible(False) \n",
" if i == n//2:\n",
" ax.set_title('Reconstructed images')\n",
" plt.show() "
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "5f8b646b",
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "too many values to unpack (expected 2)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Input \u001b[0;32mIn [34]\u001b[0m, in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m diz_loss \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrain_loss\u001b[39m\u001b[38;5;124m'\u001b[39m:[],\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m:[]}\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m epoch \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(num_epochs):\n\u001b[0;32m----> 4\u001b[0m train_loss \u001b[38;5;241m=\u001b[39m\u001b[43mtrain_epoch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mencoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43mdecoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43mdevice\u001b[49m\u001b[43m,\u001b[49m\u001b[43mtrain_loader\u001b[49m\u001b[43m,\u001b[49m\u001b[43mloss_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43moptim\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m val_loss \u001b[38;5;241m=\u001b[39m test_epoch(encoder,decoder,device,test_loader,loss_fn)\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m EPOCH \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m/\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;130;01m\\t\u001b[39;00m\u001b[38;5;124m train loss \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;130;01m\\t\u001b[39;00m\u001b[38;5;124m val loss \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(epoch \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m, num_epochs,train_loss,val_loss))\n",
"Input \u001b[0;32mIn [33]\u001b[0m, in \u001b[0;36mtrain_epoch\u001b[0;34m(encoder, decoder, device, dataloader, loss_fn, optimizer)\u001b[0m\n\u001b[1;32m 6\u001b[0m train_loss \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Iterate the dataloader (we do not need the label values, this is unsupervised learning)\u001b[39;00m\n\u001b[0;32m----> 8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m image_batch, _ \u001b[38;5;129;01min\u001b[39;00m dataloader: \u001b[38;5;66;03m# with \"_\" we just ignore the labels (the second element of the dataloader tuple)\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# Move tensor to the proper device\u001b[39;00m\n\u001b[1;32m 10\u001b[0m image_batch \u001b[38;5;241m=\u001b[39m image_batch\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m 11\u001b[0m \u001b[38;5;66;03m# Encode data\u001b[39;00m\n",
"\u001b[0;31mValueError\u001b[0m: too many values to unpack (expected 2)"
]
}
],
"source": [
"num_epochs = 30\n",
"diz_loss = {'train_loss':[],'val_loss':[]}\n",
"for epoch in range(num_epochs):\n",
" train_loss =train_epoch(encoder,decoder,device,train_loader,loss_fn,optim)\n",
" val_loss = test_epoch(encoder,decoder,device,test_loader,loss_fn)\n",
" print('\\n EPOCH {}/{} \\t train loss {} \\t val loss {}'.format(epoch + 1, num_epochs,train_loss,val_loss))\n",
" diz_loss['train_loss'].append(train_loss)\n",
" diz_loss['val_loss'].append(val_loss)\n",
" plot_ae_outputs(encoder,decoder,n=10)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|