Spaces:
No application file
No application file
File size: 6,988 Bytes
99cea46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"id": "873b1354-b85f-4c5b-9163-95190f07b39a",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import zipfile\n",
"from PIL import Image\n",
"from io import BytesIO\n",
"import numpy as np\n",
"from datasets import load_dataset\n",
"import torch\n",
"from diffusers import AutoencoderKL, UNet2DModel, UNet2DConditionModel\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "35949720-3e01-43b0-8487-a1b2131d5a9e",
"metadata": {},
"outputs": [],
"source": [
"def preprocess_image(image):\n",
" w, h = image.size\n",
" w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32\n",
" image = image.resize((w, h), resample=Image.Resampling.LANCZOS)\n",
" image = np.array(image).astype(np.float32) / 255.0\n",
" image = image[None].transpose(0, 3, 1, 2)\n",
" return 2.0 * image - 1.0\n",
"\n",
"def vae_embedding(preprocessed, num_samples=5, device=\"cuda\"):\n",
" with torch.no_grad():\n",
" processed_image = preprocessed.to(device=device)\n",
" latent_dist = vae.encode(processed_image).latent_dist\n",
" t = [0.18215*latent_dist.sample().to(\"cpu\").squeeze() for i in range(num_samples)] # sample num_samples latent vecs\n",
" t = torch.stack(t) # stack them\n",
" return torch.mean(t, axis=0).numpy() #average them. output shape: (4,64,64)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6ebd9d84-98f7-4883-ac4b-0ec875b86911",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using custom data configuration SDbiaseval--dataset-cc8e38e46c1acd54\n",
"Found cached dataset parquet (/mnt/1da05489-3812-4f15-a6e5-c8d3c57df39e/cache/huggingface/SDbiaseval___parquet/SDbiaseval--dataset-cc8e38e46c1acd54/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f184861d2e2749c9b7c1c1ea3910be27",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 196 ms, sys: 23.3 ms, total: 219 ms\n",
"Wall time: 2.51 s\n"
]
}
],
"source": [
"%%time\n",
"# dset = load_dataset(\"./dataset.py\", ignore_verifications=True) This uses the loading script and loads data from the zipped folders\n",
"dset = load_dataset(\"SDbiaseval/dataset\")\n",
"ds = dset[\"train\"]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fd832e2b-6ced-43ca-a4ca-fd54f523d22e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"vae = AutoencoderKL.from_pretrained(\"CompVis/stable-diffusion-v1-4\", subfolder=\"vae\");\n",
"vae.eval()\n",
"vae.to(\"cuda\");"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b2af2692-a372-4b96-8250-8c83c122457d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"19554 batches of 16. Last batch of size 15.\n"
]
}
],
"source": [
"ix = np.arange(len(ds))\n",
"np.random.shuffle(ix)\n",
"batch_size = 16\n",
"batche_indices = np.array_split(ix, np.ceil(len(ix)/batch_size))\n",
"print(f\"{len(batche_indices)} batches of {batch_size}. Last batch of size {len(batche_indices[-1])}.\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "8a54fdf1-f0e5-487e-b53d-afc8dbcc989c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 9h 52min 30s, sys: 2min 25s, total: 9h 54min 55s\n",
"Wall time: 7h 54min 48s\n"
]
}
],
"source": [
"%%time\n",
"embs = []\n",
"for i in batche_indices:\n",
" imx = ds.select(i)[\"image\"]\n",
" preprocessed = np.concatenate([preprocess_image(im) for im in imx])\n",
" emb = vae_embedding(torch.from_numpy(preprocessed), num_samples=10)\n",
" embs.append(emb)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "06d9346c-912f-4e24-a0ff-d5386c1780a1",
"metadata": {},
"outputs": [],
"source": [
"with open('embs.pkl', 'wb') as f:\n",
" pickle.dump(embs, f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3d0cbe87-dfb2-4c59-adf5-b4d015e2d441",
"metadata": {},
"outputs": [],
"source": [
"embeddings = np.concatenate(embs)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a6e826a9-93e0-4298-813d-9c42d139ff96",
"metadata": {},
"outputs": [],
"source": [
"with open(\"embs.pkl\", \"rb\") as f:\n",
" embeddings = pickle.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0783bb60-5439-4a62-a4ac-15198688b331",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 3.82 s, sys: 4.34 s, total: 8.16 s\n",
"Wall time: 8.2 s\n"
]
}
],
"source": [
"%%time\n",
"embeddings = np.concatenate(embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "50369f37-a4f1-4a7c-89dd-b4ef9a8ebf8b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(312860, 4, 64, 64)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"embeddings.shape"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "93f1ea7b-cbcd-49c3-a7c7-4ea26012f9b3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 0 ns, sys: 10.3 s, total: 10.3 s\n",
"Wall time: 10.3 s\n"
]
}
],
"source": [
"%%time\n",
"with open('vae_embeddings.npy', 'wb') as f:\n",
" np.save(f, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b316682-f5cc-44d7-a8ed-f1da9b6c3089",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|