Spaces:
Sleeping
Sleeping
kevinconka
commited on
Commit
·
246a775
1
Parent(s):
a378000
Refactor flagged image counting logic
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from utils import (
|
|
6 |
load_image_from_url,
|
7 |
inference,
|
8 |
load_badges,
|
9 |
-
|
10 |
)
|
11 |
from flagging import myHuggingFaceDatasetSaver
|
12 |
|
@@ -42,16 +42,12 @@ model.agnostic = True # NMS class-agnostic
|
|
42 |
# Flagging
|
43 |
dataset_name = "SEA-AI/crowdsourced-sea-images"
|
44 |
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)
|
45 |
-
|
46 |
-
|
47 |
-
def get_flagged_count():
|
48 |
-
"""Count flagged images in dataset."""
|
49 |
-
return count_flagged_images_from_csv(dataset_name)
|
50 |
|
51 |
|
52 |
theme = gr.themes.Default(primary_hue=gr.themes.colors.indigo)
|
53 |
with gr.Blocks(theme=theme, css=css) as demo:
|
54 |
-
badges = gr.HTML(load_badges(
|
55 |
title = gr.HTML(TITLE)
|
56 |
|
57 |
with gr.Row():
|
@@ -115,11 +111,11 @@ with gr.Blocks(theme=theme, css=css) as demo:
|
|
115 |
preprocess=False,
|
116 |
show_api=False,
|
117 |
).then(
|
118 |
-
lambda: load_badges(
|
119 |
)
|
120 |
|
121 |
# called during initial load in browser
|
122 |
-
demo.load(lambda: load_badges(
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
demo.queue().launch() # show_api=False)
|
|
|
6 |
load_image_from_url,
|
7 |
inference,
|
8 |
load_badges,
|
9 |
+
FlaggedCounter,
|
10 |
)
|
11 |
from flagging import myHuggingFaceDatasetSaver
|
12 |
|
|
|
42 |
# Flagging
|
43 |
dataset_name = "SEA-AI/crowdsourced-sea-images"
|
44 |
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)
|
45 |
+
flagged_counter = FlaggedCounter(dataset_name)
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
theme = gr.themes.Default(primary_hue=gr.themes.colors.indigo)
|
49 |
with gr.Blocks(theme=theme, css=css) as demo:
|
50 |
+
badges = gr.HTML(load_badges(flagged_counter.count()))
|
51 |
title = gr.HTML(TITLE)
|
52 |
|
53 |
with gr.Row():
|
|
|
111 |
preprocess=False,
|
112 |
show_api=False,
|
113 |
).then(
|
114 |
+
lambda: load_badges(flagged_counter.count()), [], badges, show_api=False
|
115 |
)
|
116 |
|
117 |
# called during initial load in browser
|
118 |
+
demo.load(lambda: load_badges(flagged_counter.count()), [], badges, show_api=False)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
demo.queue().launch() # show_api=False)
|
utils.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import time
|
2 |
import requests
|
3 |
from io import BytesIO
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
from PIL import Image
|
@@ -40,37 +41,6 @@ def inference(model, image):
|
|
40 |
return annotator.im
|
41 |
|
42 |
|
43 |
-
def count_flagged_images_via_api(dataset_name, trials=10):
|
44 |
-
"""Count flagged images via API. Might be slow."""
|
45 |
-
|
46 |
-
headers = {"Authorization": f"Bearer {get_token()}"}
|
47 |
-
API_URL = f"https://datasets-server.huggingface.co/size?dataset={dataset_name}"
|
48 |
-
|
49 |
-
def query():
|
50 |
-
response = requests.get(API_URL, headers=headers, timeout=5)
|
51 |
-
return response.json()
|
52 |
-
|
53 |
-
for i in range(trials):
|
54 |
-
try:
|
55 |
-
data = query()
|
56 |
-
if "error" not in data and data["size"]["dataset"]["num_rows"] > 0:
|
57 |
-
print(f"[{i+1}/{trials}] {data}")
|
58 |
-
return data["size"]["dataset"]["num_rows"]
|
59 |
-
except Exception:
|
60 |
-
pass
|
61 |
-
print(f"[{i+1}/{trials}] {data}")
|
62 |
-
time.sleep(5)
|
63 |
-
|
64 |
-
return 0
|
65 |
-
|
66 |
-
|
67 |
-
def count_flagged_images_from_csv(dataset_name):
|
68 |
-
"""Count flagged images from CSV. Fast but relies on local files."""
|
69 |
-
dataset_name = dataset_name.split("/")[-1]
|
70 |
-
df = pd.read_csv(f"./flagged/{dataset_name}/data.csv")
|
71 |
-
return len(df)
|
72 |
-
|
73 |
-
|
74 |
def load_badges(n):
|
75 |
"""Load badges."""
|
76 |
return f"""
|
@@ -80,3 +50,52 @@ def load_badges(n):
|
|
80 |
<img alt="" src="https://img.shields.io/badge/%F0%9F%96%BC%EF%B8%8F-{n}-green">
|
81 |
</p>
|
82 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import time
|
2 |
import requests
|
3 |
from io import BytesIO
|
4 |
+
from dataclasses import dataclass
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
from PIL import Image
|
|
|
41 |
return annotator.im
|
42 |
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def load_badges(n):
|
45 |
"""Load badges."""
|
46 |
return f"""
|
|
|
50 |
<img alt="" src="https://img.shields.io/badge/%F0%9F%96%BC%EF%B8%8F-{n}-green">
|
51 |
</p>
|
52 |
"""
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
class FlaggedCounter:
|
57 |
+
"""Count flagged images in dataset."""
|
58 |
+
|
59 |
+
dataset_name: str
|
60 |
+
headers: dict = None
|
61 |
+
|
62 |
+
def __post_init__(self):
|
63 |
+
self.API_URL = (
|
64 |
+
f"https://datasets-server.huggingface.co/size?dataset={self.dataset_name}"
|
65 |
+
)
|
66 |
+
self.trials = 10
|
67 |
+
if self.headers is None:
|
68 |
+
self.headers = {"Authorization": f"Bearer {get_token()}"}
|
69 |
+
|
70 |
+
def query(self):
|
71 |
+
"""Query API."""
|
72 |
+
response = requests.get(self.API_URL, headers=self.headers, timeout=5)
|
73 |
+
return response.json()
|
74 |
+
|
75 |
+
def from_query(self, data):
|
76 |
+
"""Count flagged images via API. Might be slow."""
|
77 |
+
for i in range(self.trials):
|
78 |
+
try:
|
79 |
+
data = self.query()
|
80 |
+
if "error" not in data and data["size"]["dataset"]["num_rows"] > 0:
|
81 |
+
print(f"[{i+1}/{self.trials}] {data}")
|
82 |
+
return data["size"]["dataset"]["num_rows"]
|
83 |
+
except Exception:
|
84 |
+
pass
|
85 |
+
print(f"[{i+1}/{self.trials}] {data}")
|
86 |
+
time.sleep(5)
|
87 |
+
|
88 |
+
return 0
|
89 |
+
|
90 |
+
def from_csv(self):
|
91 |
+
"""Count flagged images from CSV. Fast but relies on local files."""
|
92 |
+
dataset_name = self.dataset_name.split("/")[-1]
|
93 |
+
df = pd.read_csv(f"./flagged/{dataset_name}/data.csv")
|
94 |
+
return len(df)
|
95 |
+
|
96 |
+
def count(self):
|
97 |
+
"""Count flagged images."""
|
98 |
+
try:
|
99 |
+
return self.from_csv()
|
100 |
+
except FileNotFoundError:
|
101 |
+
return self.from_query(self.query())
|