File size: 4,882 Bytes
58ff7c0
f12b919
bd044ed
58ff7c0
f12b919
e49a2f4
f12b919
 
 
 
58ff7c0
0eb3d2a
f12b919
e49a2f4
 
3fb84f6
58ff7c0
 
8e5798a
71a8d2b
f12b919
e49a2f4
 
 
 
bde8431
 
 
 
 
 
 
e49a2f4
 
bde8431
e49a2f4
5facf9a
e49a2f4
da7328b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5798a
 
f12b919
 
 
8e5798a
 
f12b919
8e5798a
 
 
 
 
 
5facf9a
 
 
 
 
 
 
 
 
 
 
8e5798a
 
f12b919
 
8e5798a
 
 
 
69e13f0
f12b919
 
8e5798a
 
 
 
 
 
 
 
f12b919
e49a2f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
app_file: app.py
colorFrom: yellow
colorTo: green
description: 'TODO: add a description here'
emoji: 🤑
pinned: false
runme:
  id: 01HPS3ASFJXVQR88985QNSXVN1
  version: v3
sdk: gradio
sdk_version: 4.36.0
tags:
- evaluate
- metric
title: user-friendly-metrics
---

# How to Use

```python {"id":"01HPS3ASFHPCECERTYN7Z4Z7MN"}
import evaluate
from seametrics.payload.processor import PayloadProcessor

payload = PayloadProcessor(
    dataset_name="SENTRY_VIDEOS_DATASET_QA",
    gt_field="ground_truth_det_fused_id",
    models=["ahoy_IR_b2_engine_3_7_0_757_g8765b007_oversea"],
    sequence_list=["Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_14_41_51"],
    # tags=["GT_ID_FUSION"],
    tracking_mode=True
).payload

module = evaluate.load("SEA-AI/user-friendly-metrics")
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
print(res)
```

```json
{
    "global": {
        "ahoy_IR_b2_engine_3_6_0_49_gd81d3b63_oversea": {
            "all": {
                "f1": 0.15967351103175614,
                "fn": 2923.0,
                "fp": 3666.0,
                "num_gt_ids": 10,
                "precision": 0.14585274930102515,
                "recall": 0.1763877148492533,
                "recognition_0.3": 0.1,
                "recognition_0.5": 0.1,
                "recognition_0.8": 0.1,
                "recognized_0.3": 1,
                "recognized_0.5": 1,
                "recognized_0.8": 1,
                "tp": 626.0
            }
        }
    },
    "per_sequence": {
        "Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_12_51_49": {
            "ahoy_IR_b2_engine_3_6_0_49_gd81d3b63_oversea": {
                "all": {
                    "f1": 0.15967351103175614,
                    "fn": 2923.0,
                    "fp": 3666.0,
                    "num_gt_ids": 10,
                    "precision": 0.14585274930102515,
                    "recall": 0.1763877148492533,
                    "recognition_0.3": 0.1,
                    "recognition_0.5": 0.1,
                    "recognition_0.8": 0.1,
                    "recognized_0.3": 1,
                    "recognized_0.5": 1,
                    "recognized_0.8": 1,
                    "tp": 626.0
                }
            }
        }
    }
}
```

## Metric Settings

The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association. So, the higher the `max_iou` value, the more the predicted bounding boxes are considered for association.

## Output

The output is a dictionary containing the following metrics:

| Name                 | Description                                                                        |
| :------------------- | :--------------------------------------------------------------------------------- |
| recall               | Number of detections over number of objects.                                       |
| precision            | Number of detected objects over sum of detected and false positives.               |
| f1   | F1 score                                     |
| num_gt_ids       | Number of unique objects on the ground truth                     |
| fn    | Number of false negatives                  |
| fp          | Number of of false postives                        |
| tp  | number of true positives                                    |
| recognized_th           | Total number of unique objects on the ground truth that were seen more then th% of the times |
| recognition_th           | Total number of unique objects on the ground truth that were seen more then th% of the times over the number of unique objects on the ground truth|

## How it Works

We levereage one of the internal variables of motmetrics ```MOTAccumulator``` class, ```events```, which keeps track of the detections hits and misses. These values are then processed via the ```track_ratios``` function which counts the ratio of assigned to total appearance count per unique object id. We then define the ```recognition``` function that counts how many objects have been seen more times then the desired threshold.

## Citations

```bibtex {"id":"01HPS3ASFJXVQR88985GKHAQRE"}
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}}
```

```bibtex {"id":"01HPS3ASFJXVQR88985KRT478N"}
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}}
```

## Further References

- [Github Repository - py-motmetrics](https://github.com/cheind/py-motmetrics/tree/develop)