Spaces:
Sleeping
Sleeping
File size: 6,790 Bytes
58ff7c0 f12b919 bd044ed 58ff7c0 f12b919 e49a2f4 f12b919 58ff7c0 0eb3d2a f12b919 e49a2f4 3fb84f6 58ff7c0 8e5798a 71a8d2b f12b919 e49a2f4 bde8431 e49a2f4 bde8431 e49a2f4 5facf9a e49a2f4 da7328b 86bbaac da7328b 86bbaac da7328b 86bbaac 8e5798a f12b919 8e5798a f12b919 8e5798a 5facf9a 8e5798a f2e9ff4 12e6370 c7f63d8 12e6370 f2e9ff4 12e6370 f2e9ff4 86f14cf 8e5798a f12b919 8e5798a 69e13f0 f12b919 8e5798a f12b919 e49a2f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
app_file: app.py
colorFrom: yellow
colorTo: green
description: 'TODO: add a description here'
emoji: 🤑
pinned: false
runme:
id: 01HPS3ASFJXVQR88985QNSXVN1
version: v3
sdk: gradio
sdk_version: 4.36.0
tags:
- evaluate
- metric
title: user-friendly-metrics
---
# How to Use
```python {"id":"01HPS3ASFHPCECERTYN7Z4Z7MN"}
import evaluate
from seametrics.payload.processor import PayloadProcessor
payload = PayloadProcessor(
dataset_name="SENTRY_VIDEOS_DATASET_QA",
gt_field="ground_truth_det_fused_id",
models=["ahoy_IR_b2_engine_3_7_0_757_g8765b007_oversea"],
sequence_list=["Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_14_41_51"],
# tags=["GT_ID_FUSION"],
tracking_mode=True
).payload
module = evaluate.load("SEA-AI/user-friendly-metrics")
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
print(res)
```
```json
{
"ahoy_IR_b2_engine_3_6_0_49_gd81d3b63_oversea": {
"overall": {
"all": {
"f1": 0.15967351103175614,
"fn": 2923.0,
"fp": 3666.0,
"num_gt_ids": 10,
"precision": 0.14585274930102515,
"recall": 0.1763877148492533,
"recognition_0.3": 0.1,
"recognition_0.5": 0.1,
"recognition_0.8": 0.1,
"recognized_0.3": 1,
"recognized_0.5": 1,
"recognized_0.8": 1,
"tp": 626.0
}
},
"per_sequence": {
"Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_12_51_49": {
"all": {
"f1": 0.15967351103175614,
"fn": 2923.0,
"fp": 3666.0,
"num_gt_ids": 10,
"precision": 0.14585274930102515,
"recall": 0.1763877148492533,
"recognition_0.3": 0.1,
"recognition_0.5": 0.1,
"recognition_0.8": 0.1,
"recognized_0.3": 1,
"recognized_0.5": 1,
"recognized_0.8": 1,
"tp": 626.0
}
}
}
}
}
```
## Metric Settings
The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association. So, the higher the `max_iou` value, the more the predicted bounding boxes are considered for association.
## Output
The output is a dictionary containing the following metrics:
| Name | Description |
| :------------------- | :--------------------------------------------------------------------------------- |
| recall | Number of detections over number of objects. |
| precision | Number of detected objects over sum of detected and false positives. |
| f1 | F1 score |
| num_gt_ids | Number of unique objects on the ground truth |
| fn | Number of false negatives |
| fp | Number of of false postives |
| tp | number of true positives |
| recognized_th | Total number of unique objects on the ground truth that were seen more then th% of the times |
| recognition_th | Total number of unique objects on the ground truth that were seen more then th% of the times over the number of unique objects on the ground truth|
## How it Works
We levereage one of the internal variables of motmetrics ```MOTAccumulator``` class, ```events```, which keeps track of the detections hits and misses. These values are then processed via the ```track_ratios``` function which counts the ratio of assigned to total appearance count per unique object id. We then define the ```recognition``` function that counts how many objects have been seen more times then the desired threshold.
## W&B logging
When you use **module.wandb()**, it is possible to log the User Frindly metrics values in Weights and Bias (W&B). The W&B key is stored as a Secret in this repository.
### Params
- **wandb_project** - Name of the W&B project (Default: `'user_freindly_metrics'`)
- **log_plots** (bool, optional): Generates categorized bar charts for global metrics. Defaults to True
- **debug** (bool, optional): Logs everything to the console and w&b Logs page. Defaults to False
```python
import evaluate
import logging
from seametrics.payload.processor import PayloadProcessor
logging.basicConfig(level=logging.WARNING)
# Configure your dataset and model details
payload = PayloadProcessor(
dataset_name="SENTRY_VIDEOS_DATASET_QA",
gt_field="ground_truth_det_fused_id",
models=["ahoy_IR_b2_engine_3_7_0_757_g8765b007_oversea"],
sequence_list=["Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_14_41_51"],
tracking_mode=True
).payload
# Evaluate using SEA-AI/user-friendly-metrics
module = evaluate.load("SEA-AI/user-friendly-metrics")
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
module.wandb(res,log_plots=True, debug=True)
```
- If `log_plots` is `True`, the W&B logging function generates four bar plots:
- **User_Friendly Metrics (mostly_tracked_score_%)** mainly for non dev users
- **User_Friendly Metrics (mostly_tracked_count_%)** for dev
- **Evaluation Metrics** (F1, precision, recall)
- **Prediction Summary** (false negatives, false positives, true positives)
- If `debug` is `True`, the function logs the global metrics plus the per-sequence evaluation metrics in descending order of F1 score under the **Logs** section of the run page.
- If both `log_plots` and `debug` are `False`, the function logs the metrics to the **Summary**.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ca2aafdc38a2858aa43f1e/RYEsFwt6K-jP0mp7_RIZv.png)
## Citations
```bibtex {"id":"01HPS3ASFJXVQR88985GKHAQRE"}
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}}
```
```bibtex {"id":"01HPS3ASFJXVQR88985KRT478N"}
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}}
```
## Further References
- [Github Repository - py-motmetrics](https://github.com/cheind/py-motmetrics/tree/develop) |