File size: 6,790 Bytes
58ff7c0
f12b919
bd044ed
58ff7c0
f12b919
e49a2f4
f12b919
 
 
 
58ff7c0
0eb3d2a
f12b919
e49a2f4
 
3fb84f6
58ff7c0
 
8e5798a
71a8d2b
f12b919
e49a2f4
 
 
 
bde8431
 
 
 
 
 
 
e49a2f4
 
bde8431
e49a2f4
5facf9a
e49a2f4
da7328b
 
86bbaac
 
da7328b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86bbaac
 
 
da7328b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86bbaac
8e5798a
 
f12b919
 
 
8e5798a
 
f12b919
8e5798a
 
 
 
 
 
5facf9a
 
 
 
 
 
 
 
 
 
 
8e5798a
f2e9ff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e6370
c7f63d8
 
 
 
12e6370
 
f2e9ff4
12e6370
f2e9ff4
 
 
86f14cf
8e5798a
f12b919
 
8e5798a
 
 
 
69e13f0
f12b919
 
8e5798a
 
 
 
 
 
 
 
f12b919
e49a2f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
app_file: app.py
colorFrom: yellow
colorTo: green
description: 'TODO: add a description here'
emoji: 🤑
pinned: false
runme:
  id: 01HPS3ASFJXVQR88985QNSXVN1
  version: v3
sdk: gradio
sdk_version: 4.36.0
tags:
- evaluate
- metric
title: user-friendly-metrics
---

# How to Use

```python {"id":"01HPS3ASFHPCECERTYN7Z4Z7MN"}
import evaluate
from seametrics.payload.processor import PayloadProcessor

payload = PayloadProcessor(
    dataset_name="SENTRY_VIDEOS_DATASET_QA",
    gt_field="ground_truth_det_fused_id",
    models=["ahoy_IR_b2_engine_3_7_0_757_g8765b007_oversea"],
    sequence_list=["Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_14_41_51"],
    # tags=["GT_ID_FUSION"],
    tracking_mode=True
).payload

module = evaluate.load("SEA-AI/user-friendly-metrics")
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
print(res)
```

```json
{
    "ahoy_IR_b2_engine_3_6_0_49_gd81d3b63_oversea": {
        "overall": {
            "all": {
                "f1": 0.15967351103175614,
                "fn": 2923.0,
                "fp": 3666.0,
                "num_gt_ids": 10,
                "precision": 0.14585274930102515,
                "recall": 0.1763877148492533,
                "recognition_0.3": 0.1,
                "recognition_0.5": 0.1,
                "recognition_0.8": 0.1,
                "recognized_0.3": 1,
                "recognized_0.5": 1,
                "recognized_0.8": 1,
                "tp": 626.0
            }
        },
        "per_sequence": {
            "Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_12_51_49": {
                "all": {
                    "f1": 0.15967351103175614,
                    "fn": 2923.0,
                    "fp": 3666.0,
                    "num_gt_ids": 10,
                    "precision": 0.14585274930102515,
                    "recall": 0.1763877148492533,
                    "recognition_0.3": 0.1,
                    "recognition_0.5": 0.1,
                    "recognition_0.8": 0.1,
                    "recognized_0.3": 1,
                    "recognized_0.5": 1,
                    "recognized_0.8": 1,
                    "tp": 626.0
                }
            }
        }
    }
}

```

## Metric Settings

The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association. So, the higher the `max_iou` value, the more the predicted bounding boxes are considered for association.

## Output

The output is a dictionary containing the following metrics:

| Name                 | Description                                                                        |
| :------------------- | :--------------------------------------------------------------------------------- |
| recall               | Number of detections over number of objects.                                       |
| precision            | Number of detected objects over sum of detected and false positives.               |
| f1   | F1 score                                     |
| num_gt_ids       | Number of unique objects on the ground truth                     |
| fn    | Number of false negatives                  |
| fp          | Number of of false postives                        |
| tp  | number of true positives                                    |
| recognized_th           | Total number of unique objects on the ground truth that were seen more then th% of the times |
| recognition_th           | Total number of unique objects on the ground truth that were seen more then th% of the times over the number of unique objects on the ground truth|

## How it Works

We levereage one of the internal variables of motmetrics ```MOTAccumulator``` class, ```events```, which keeps track of the detections hits and misses. These values are then processed via the ```track_ratios``` function which counts the ratio of assigned to total appearance count per unique object id. We then define the ```recognition``` function that counts how many objects have been seen more times then the desired threshold.




## W&B logging
When you use **module.wandb()**, it is possible to log the User Frindly metrics values in Weights and Bias (W&B). The W&B key is stored as a Secret in this repository.

### Params
- **wandb_project** - Name of the W&B project (Default: `'user_freindly_metrics'`)
- **log_plots** (bool, optional): Generates categorized bar charts for global metrics. Defaults to True
- **debug** (bool, optional): Logs everything to the console and w&b Logs page. Defaults to False
  
```python
import evaluate
import logging
from seametrics.payload.processor import PayloadProcessor

logging.basicConfig(level=logging.WARNING)

# Configure your dataset and model details
payload = PayloadProcessor(
    dataset_name="SENTRY_VIDEOS_DATASET_QA",
    gt_field="ground_truth_det_fused_id",
    models=["ahoy_IR_b2_engine_3_7_0_757_g8765b007_oversea"],
    sequence_list=["Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_14_41_51"],
    tracking_mode=True
).payload


# Evaluate using SEA-AI/user-friendly-metrics
module = evaluate.load("SEA-AI/user-friendly-metrics")
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])

module.wandb(res,log_plots=True, debug=True)
```

- If `log_plots` is `True`, the W&B logging function generates four bar plots:  
  - **User_Friendly Metrics (mostly_tracked_score_%)** mainly for non dev users  
  - **User_Friendly Metrics (mostly_tracked_count_%)** for dev
  - **Evaluation Metrics** (F1, precision, recall)  
  - **Prediction Summary** (false negatives, false positives, true positives)
   
- If `debug` is `True`, the function logs the global metrics plus the per-sequence evaluation metrics in descending order of F1 score under the **Logs** section of the run page.

- If both `log_plots` and `debug` are `False`, the function logs the metrics to the **Summary**.  

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ca2aafdc38a2858aa43f1e/RYEsFwt6K-jP0mp7_RIZv.png)


## Citations

```bibtex {"id":"01HPS3ASFJXVQR88985GKHAQRE"}
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}}
```

```bibtex {"id":"01HPS3ASFJXVQR88985KRT478N"}
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}}
```

## Further References

- [Github Repository - py-motmetrics](https://github.com/cheind/py-motmetrics/tree/develop)