Spaces:
Running
Running
!pip install diffusers torch moviepy pillow | |
import torch | |
from diffusers import StableDiffusionImg2ImgPipeline | |
from PIL import Image | |
from moviepy.editor import ImageSequenceClip | |
import os | |
# Step 1: Set up Stable Diffusion img2img pipeline | |
def setup_pipeline(model_name="CompVis/stable-diffusion-v1-4"): | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_name, torch_dtype=torch.float16) | |
pipe.to("cuda") # Use GPU for faster generation | |
return pipe | |
# Step 2: Generate frames from the single image | |
def generate_frames(pipe, input_image_path, prompt, num_frames=30, guidance_scale=7.5, strength=0.5, output_folder="frames"): | |
os.makedirs(output_folder, exist_ok=True) | |
frames = [] | |
# Load the input image | |
input_image = Image.open(input_image_path).convert("RGB") | |
for i in range(num_frames): | |
# Slightly modify the prompt or strength for variation | |
current_prompt = f"{prompt}, frame {i+1} of {num_frames}" | |
current_strength = strength + (0.01 * i) # Gradual change in strength | |
# Generate a new image | |
generated_image = pipe( | |
prompt=current_prompt, | |
image=input_image, | |
strength=current_strength, | |
guidance_scale=guidance_scale | |
).images[0] | |
# Save the frame | |
frame_path = os.path.join(output_folder, f"frame_{i:03d}.png") | |
generated_image.save(frame_path) | |
frames.append(frame_path) | |
print(f"Generated frame {i+1}/{num_frames}") | |
return frames | |
# Step 3: Create video from frames | |
def create_video(frames, output_file="output_video.mp4", fps=24): | |
clip = ImageSequenceClip(frames, fps=fps) | |
clip.write_videofile(output_file, codec="libx264") | |
print(f"Video saved as {output_file}") | |
# Step 4: Main script | |
if __name__ == "__main__": | |
# Model and prompt configuration | |
input_image_path = "/mnt/data/Screenshot 2025-01-03 171727.png" # Use the uploaded image | |
prompt = "A child riding a bicycle through a magical forest, dynamic and cinematic lighting" | |
num_frames = 30 | |
fps = 24 | |
# Initialize Stable Diffusion img2img pipeline | |
pipe = setup_pipeline() | |
# Generate frames from the single image | |
print("Generating frames...") | |
frames = generate_frames(pipe, input_image_path, prompt, num_frames=num_frames) | |
# Create video | |
print("Creating video...") | |
create_video(frames, output_file="image_to_video_diffusion.mp4", fps=fps) | |