Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
from dataclasses import dataclass | |
import random | |
from transformers import pipeline | |
from huggingface_hub import InferenceClient, login | |
import os | |
class PatientMetadata: | |
age: int | |
smoking_status: str | |
family_history: bool | |
menopause_status: str | |
previous_mammogram: bool | |
breast_density: str | |
hormone_therapy: bool | |
class SimplifiedBreastAnalyzer: | |
def __init__(self, hf_token: str): | |
"""Initialize the analyzer with models.""" | |
print("Initializing system...") | |
# Login to Hugging Face | |
login(token=hf_token) | |
# Initialize vision pipelines for tumor detection and size classification | |
self.tumor_classifier = pipeline( | |
"image-classification", | |
model="SIATCN/vit_tumor_classifier", | |
device="cpu" | |
) | |
self.size_classifier = pipeline( | |
"image-classification", | |
model="SIATCN/vit_tumor_radius_detection_finetuned", | |
device="cpu" | |
) | |
# Initialize Mistral client for report generation | |
self.report_generator = InferenceClient( | |
model="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
token=hf_token | |
) | |
print("Initialization complete!") | |
def _generate_synthetic_metadata(self) -> PatientMetadata: | |
"""Generate realistic patient metadata for breast cancer screening.""" | |
age = random.randint(40, 75) | |
smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"]) | |
family_history = random.choice([True, False]) | |
menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal" | |
previous_mammogram = random.choice([True, False]) | |
breast_density = random.choice([ | |
"A: Almost entirely fatty", | |
"B: Scattered fibroglandular", | |
"C: Heterogeneously dense", | |
"D: Extremely dense" | |
]) | |
hormone_therapy = random.choice([True, False]) | |
return PatientMetadata( | |
age=age, | |
smoking_status=smoking_status, | |
family_history=family_history, | |
menopause_status=menopause_status, | |
previous_mammogram=previous_mammogram, | |
breast_density=breast_density, | |
hormone_therapy=hormone_therapy | |
) | |
def _process_image(self, image: Image.Image) -> Image.Image: | |
"""Process input image for model consumption.""" | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
return image.resize((224, 224)) | |
def _generate_medical_report(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str: | |
"""Generate a medical report using Mistral.""" | |
prompt = f"""<s>[INST] Generate a detailed medical report for this breast imaging scan: | |
Scan Results: | |
- Finding: {'Abnormal area detected' if has_tumor else 'No abnormalities detected'} | |
{f'- Size of abnormal area: {tumor_size} cm' if has_tumor else ''} | |
Patient Information: | |
- Age: {metadata.age} years | |
- Risk factors: {', '.join([ | |
'family history of breast cancer' if metadata.family_history else '', | |
f'{metadata.smoking_status.lower()}', | |
'currently on hormone therapy' if metadata.hormone_therapy else '' | |
]).strip(', ')} | |
- Breast density: {metadata.breast_density} | |
- Previous mammogram: {'Yes' if metadata.previous_mammogram else 'No'} | |
- Menopausal status: {metadata.menopause_status} | |
Please provide: | |
1. A clear interpretation of the findings | |
2. A specific recommendation for next steps based on the findings and risk factors | |
3. Recommended follow-up timeline [/INST]</s>""" | |
# Generate response using Mistral | |
response = self.report_generator.text_generation( | |
prompt, | |
max_new_tokens=512, | |
temperature=0.3, | |
top_p=0.9, | |
repetition_penalty=1.1, | |
do_sample=True, | |
seed=42 | |
) | |
return f"FINDINGS AND RECOMMENDATIONS:\n{response}" | |
def analyze(self, image: Image.Image) -> str: | |
"""Main analysis pipeline.""" | |
try: | |
processed_image = self._process_image(image) | |
metadata = self._generate_synthetic_metadata() | |
# Detect tumor | |
tumor_result = self.tumor_classifier(processed_image) | |
has_tumor = tumor_result[0]['label'] == 'tumor' | |
# Measure size if tumor detected | |
size_result = self.size_classifier(processed_image) | |
tumor_size = size_result[0]['label'].replace('tumor-', '') | |
# Generate report | |
report = self._generate_medical_report(has_tumor, tumor_size, metadata) | |
return f"""SCAN RESULTS: | |
{'⚠️ Abnormal area detected' if has_tumor else '✓ No abnormalities detected'} | |
{f'Size of abnormal area: {tumor_size} cm' if has_tumor else ''} | |
PATIENT INFORMATION: | |
• Age: {metadata.age} years | |
• Risk Factors: {', '.join([ | |
'family history of breast cancer' if metadata.family_history else '', | |
metadata.smoking_status.lower(), | |
'currently on hormone therapy' if metadata.hormone_therapy else '' | |
]).strip(', ')} | |
• Breast Density: {metadata.breast_density} | |
• Previous Mammogram: {'Yes' if metadata.previous_mammogram else 'No'} | |
• Menopausal Status: {metadata.menopause_status} | |
{report}""" | |
except Exception as e: | |
import traceback | |
return f"Error during analysis: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
def create_interface(hf_token: str) -> gr.Interface: | |
"""Create the Gradio interface.""" | |
analyzer = SimplifiedBreastAnalyzer(hf_token) | |
interface = gr.Interface( | |
fn=analyzer.analyze, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Breast Image for Analysis") | |
], | |
outputs=[ | |
gr.Textbox(label="Analysis Results", lines=20) | |
], | |
title="Breast Imaging Analysis System", | |
description="""Upload a breast image for comprehensive analysis. The system will: | |
1. Detect the presence of tumors | |
2. Classify tumor size if present | |
3. Generate a detailed medical report with recommendations""", | |
) | |
return interface | |
if __name__ == "__main__": | |
print("Starting application...") | |
# Load HuggingFace token from secrets | |
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") | |
if not HF_TOKEN: | |
raise ValueError("Please set HUGGINGFACE_TOKEN environment variable") | |
interface = create_interface(HF_TOKEN) | |
# Modified launch parameters for Spaces | |
interface.launch( | |
debug=True, | |
server_name="0.0.0.0", # Required for Spaces | |
server_port=7860, # Standard port for Spaces | |
share=False # Disable sharing as it's not needed on Spaces | |
) |