BreastCare / app1.py
SIATCN's picture
Rename app.py to app1.py
e5dc9f1 verified
raw
history blame
6.85 kB
import gradio as gr
from PIL import Image
from dataclasses import dataclass
import random
from transformers import pipeline
from huggingface_hub import InferenceClient, login
import os
@dataclass
class PatientMetadata:
age: int
smoking_status: str
family_history: bool
menopause_status: str
previous_mammogram: bool
breast_density: str
hormone_therapy: bool
class SimplifiedBreastAnalyzer:
def __init__(self, hf_token: str):
"""Initialize the analyzer with models."""
print("Initializing system...")
# Login to Hugging Face
login(token=hf_token)
# Initialize vision pipelines for tumor detection and size classification
self.tumor_classifier = pipeline(
"image-classification",
model="SIATCN/vit_tumor_classifier",
device="cpu"
)
self.size_classifier = pipeline(
"image-classification",
model="SIATCN/vit_tumor_radius_detection_finetuned",
device="cpu"
)
# Initialize Mistral client for report generation
self.report_generator = InferenceClient(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
token=hf_token
)
print("Initialization complete!")
def _generate_synthetic_metadata(self) -> PatientMetadata:
"""Generate realistic patient metadata for breast cancer screening."""
age = random.randint(40, 75)
smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"])
family_history = random.choice([True, False])
menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal"
previous_mammogram = random.choice([True, False])
breast_density = random.choice([
"A: Almost entirely fatty",
"B: Scattered fibroglandular",
"C: Heterogeneously dense",
"D: Extremely dense"
])
hormone_therapy = random.choice([True, False])
return PatientMetadata(
age=age,
smoking_status=smoking_status,
family_history=family_history,
menopause_status=menopause_status,
previous_mammogram=previous_mammogram,
breast_density=breast_density,
hormone_therapy=hormone_therapy
)
def _process_image(self, image: Image.Image) -> Image.Image:
"""Process input image for model consumption."""
if image.mode != 'RGB':
image = image.convert('RGB')
return image.resize((224, 224))
def _generate_medical_report(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str:
"""Generate a medical report using Mistral."""
prompt = f"""<s>[INST] Generate a detailed medical report for this breast imaging scan:
Scan Results:
- Finding: {'Abnormal area detected' if has_tumor else 'No abnormalities detected'}
{f'- Size of abnormal area: {tumor_size} cm' if has_tumor else ''}
Patient Information:
- Age: {metadata.age} years
- Risk factors: {', '.join([
'family history of breast cancer' if metadata.family_history else '',
f'{metadata.smoking_status.lower()}',
'currently on hormone therapy' if metadata.hormone_therapy else ''
]).strip(', ')}
- Breast density: {metadata.breast_density}
- Previous mammogram: {'Yes' if metadata.previous_mammogram else 'No'}
- Menopausal status: {metadata.menopause_status}
Please provide:
1. A clear interpretation of the findings
2. A specific recommendation for next steps based on the findings and risk factors
3. Recommended follow-up timeline [/INST]</s>"""
# Generate response using Mistral
response = self.report_generator.text_generation(
prompt,
max_new_tokens=512,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
seed=42
)
return f"FINDINGS AND RECOMMENDATIONS:\n{response}"
def analyze(self, image: Image.Image) -> str:
"""Main analysis pipeline."""
try:
processed_image = self._process_image(image)
metadata = self._generate_synthetic_metadata()
# Detect tumor
tumor_result = self.tumor_classifier(processed_image)
has_tumor = tumor_result[0]['label'] == 'tumor'
# Measure size if tumor detected
size_result = self.size_classifier(processed_image)
tumor_size = size_result[0]['label'].replace('tumor-', '')
# Generate report
report = self._generate_medical_report(has_tumor, tumor_size, metadata)
return f"""SCAN RESULTS:
{'⚠️ Abnormal area detected' if has_tumor else '✓ No abnormalities detected'}
{f'Size of abnormal area: {tumor_size} cm' if has_tumor else ''}
PATIENT INFORMATION:
• Age: {metadata.age} years
• Risk Factors: {', '.join([
'family history of breast cancer' if metadata.family_history else '',
metadata.smoking_status.lower(),
'currently on hormone therapy' if metadata.hormone_therapy else ''
]).strip(', ')}
• Breast Density: {metadata.breast_density}
• Previous Mammogram: {'Yes' if metadata.previous_mammogram else 'No'}
• Menopausal Status: {metadata.menopause_status}
{report}"""
except Exception as e:
import traceback
return f"Error during analysis: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
def create_interface(hf_token: str) -> gr.Interface:
"""Create the Gradio interface."""
analyzer = SimplifiedBreastAnalyzer(hf_token)
interface = gr.Interface(
fn=analyzer.analyze,
inputs=[
gr.Image(type="pil", label="Upload Breast Image for Analysis")
],
outputs=[
gr.Textbox(label="Analysis Results", lines=20)
],
title="Breast Imaging Analysis System",
description="""Upload a breast image for comprehensive analysis. The system will:
1. Detect the presence of tumors
2. Classify tumor size if present
3. Generate a detailed medical report with recommendations""",
)
return interface
if __name__ == "__main__":
print("Starting application...")
# Load HuggingFace token from secrets
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
if not HF_TOKEN:
raise ValueError("Please set HUGGINGFACE_TOKEN environment variable")
interface = create_interface(HF_TOKEN)
# Modified launch parameters for Spaces
interface.launch(
debug=True,
server_name="0.0.0.0", # Required for Spaces
server_port=7860, # Standard port for Spaces
share=False # Disable sharing as it's not needed on Spaces
)