Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def _generate_medical_report(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str:
|
2 |
+
"""Generate a standardized medical report using Mistral."""
|
3 |
+
prompt = f"""<s>[INST] Generate a structured medical report for a breast imaging scan using the following format exactly.
|
4 |
+
Keep sections consistent and use proper medical terminology. Be concise yet thorough.
|
5 |
+
|
6 |
+
EXAMINATION PERFORMED:
|
7 |
+
- Diagnostic Digital Mammogram
|
8 |
+
- Date: {datetime.now().strftime('%B %d, %Y')}
|
9 |
+
|
10 |
+
CLINICAL FINDINGS:
|
11 |
+
Primary Finding: {'Abnormal area detected' if has_tumor else 'No abnormalities detected'}
|
12 |
+
{f'Lesion Size: {tumor_size} cm' if has_tumor else ''}
|
13 |
+
|
14 |
+
PATIENT HISTORY:
|
15 |
+
- Age: {metadata.age} years
|
16 |
+
- Menopausal Status: {metadata.menopause_status}
|
17 |
+
- Previous Mammogram: {'Yes' if metadata.previous_mammogram else 'No'}
|
18 |
+
- Breast Tissue Density: {metadata.breast_density}
|
19 |
+
|
20 |
+
RISK FACTORS:
|
21 |
+
{f'• Family History: {"Present" if metadata.family_history else "None"}'}
|
22 |
+
• Smoking Status: {metadata.smoking_status}
|
23 |
+
• Hormone Therapy: {'Yes' if metadata.hormone_therapy else 'No'}
|
24 |
+
|
25 |
+
Please generate a report with these exact sections:
|
26 |
+
|
27 |
+
1. DETAILED FINDINGS
|
28 |
+
[Describe the mammographic findings in detail, including location, characteristics, and comparison with any previous studies if available]
|
29 |
+
|
30 |
+
2. IMPRESSION
|
31 |
+
[Provide a clear assessment using BI-RADS classification if applicable]
|
32 |
+
|
33 |
+
3. RECOMMENDATIONS
|
34 |
+
[List specific follow-up actions and timeline]
|
35 |
+
|
36 |
+
4. ADDITIONAL NOTES
|
37 |
+
[Include any relevant screening considerations or risk-management suggestions]
|
38 |
+
|
39 |
+
Format each section consistently and maintain professional medical terminology throughout. [/INST]</s>"""
|
40 |
+
|
41 |
+
# Generate response using Mistral
|
42 |
+
response = self.report_generator.text_generation(
|
43 |
+
prompt,
|
44 |
+
max_new_tokens=800, # Increased for comprehensive report
|
45 |
+
temperature=0.3, # Low temperature for consistency
|
46 |
+
top_p=0.9,
|
47 |
+
repetition_penalty=1.1,
|
48 |
+
do_sample=True,
|
49 |
+
seed=42
|
50 |
+
)
|
51 |
+
|
52 |
+
# Post-process the response to ensure consistent formatting
|
53 |
+
formatted_response = f"""MAMMOGRAM REPORT
|
54 |
+
Date: {datetime.now().strftime('%B %d, %Y')}
|
55 |
+
----------------------------------------
|
56 |
+
|
57 |
+
{response.strip()}
|
58 |
+
|
59 |
+
----------------------------------------
|
60 |
+
NOTE: This report was generated using AI assistance and should be reviewed by a qualified healthcare professional.
|
61 |
+
All findings and recommendations should be clinically verified."""
|
62 |
+
|
63 |
+
return formatted_response
|
64 |
+
|
65 |
+
# Update the analyze method to ensure consistent output formatting
|
66 |
+
def analyze(self, image: Image.Image) -> str:
|
67 |
+
"""Main analysis pipeline with standardized output."""
|
68 |
+
try:
|
69 |
+
processed_image = self._process_image(image)
|
70 |
+
metadata = self._generate_synthetic_metadata()
|
71 |
+
|
72 |
+
# Detect tumor
|
73 |
+
tumor_result = self.tumor_classifier(processed_image)
|
74 |
+
has_tumor = tumor_result[0]['label'] == 'tumor'
|
75 |
+
tumor_confidence = tumor_result[0]['score']
|
76 |
+
|
77 |
+
# Measure size if tumor detected
|
78 |
+
size_result = self.size_classifier(processed_image)
|
79 |
+
tumor_size = size_result[0]['label'].replace('tumor-', '')
|
80 |
+
|
81 |
+
# Generate report
|
82 |
+
report = self._generate_medical_report(has_tumor, tumor_size, metadata)
|
83 |
+
|
84 |
+
return f"""BREAST IMAGING ANALYSIS REPORT
|
85 |
+
========================================
|
86 |
+
|
87 |
+
INITIAL SCAN ASSESSMENT:
|
88 |
+
{'⚠️ ABNORMAL FINDING DETECTED' if has_tumor else '✓ NO ABNORMALITIES DETECTED'}
|
89 |
+
Detection Confidence: {tumor_confidence:.2%}
|
90 |
+
{f'Estimated Size: {tumor_size} cm' if has_tumor else ''}
|
91 |
+
|
92 |
+
----------------------------------------
|
93 |
+
{report}"""
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
import traceback
|
97 |
+
return f"ERROR IN ANALYSIS:\n{str(e)}\n\nDebug Information:\n{traceback.format_exc()}"
|