SIATCN commited on
Commit
f08a03a
·
verified ·
1 Parent(s): 8c05d9f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +321 -0
app.py ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ from dataclasses import dataclass
4
+ import random
5
+ from transformers import pipeline
6
+ from huggingface_hub import InferenceClient, login
7
+ import os
8
+ from datetime import datetime
9
+ import json
10
+ from enum import Enum
11
+
12
+ class PromptFormat(Enum):
13
+ XML = "xml"
14
+ JSON = "json"
15
+ MARKDOWN = "markdown"
16
+
17
+ @dataclass
18
+ class PatientMetadata:
19
+ age: int
20
+ smoking_status: str
21
+ family_history: bool
22
+ menopause_status: str
23
+ previous_mammogram: bool
24
+ breast_density: str
25
+ hormone_therapy: bool
26
+
27
+ class MicrowaveBreastAnalyzer:
28
+ def __init__(self, hf_token: str, prompt_format: PromptFormat = PromptFormat.XML):
29
+ """Initialize the analyzer with models and specified prompt format."""
30
+ print(f"Initializing system with {prompt_format.value} prompt format...")
31
+
32
+ # Set prompt format
33
+ self.prompt_format = prompt_format
34
+
35
+ # Login to Hugging Face
36
+ login(token=hf_token)
37
+
38
+ # Initialize vision pipelines for tumor detection and size classification
39
+ self.tumor_classifier = pipeline(
40
+ "image-classification",
41
+ model="SIATCN/vit_tumor_classifier",
42
+ device="cpu"
43
+ )
44
+
45
+ self.size_classifier = pipeline(
46
+ "image-classification",
47
+ model="SIATCN/vit_tumor_radius_detection_finetuned",
48
+ device="cpu"
49
+ )
50
+
51
+ # Initialize Mistral client for report generation
52
+ self.report_generator = InferenceClient(
53
+ model="mistralai/Mixtral-8x7B-Instruct-v0.1",
54
+ token=hf_token
55
+ )
56
+
57
+ print("Initialization complete!")
58
+
59
+ def _generate_synthetic_metadata(self) -> PatientMetadata:
60
+ """Generate realistic patient metadata for screening."""
61
+ age = random.randint(40, 75)
62
+ smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"])
63
+ family_history = random.choice([True, False])
64
+ menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal"
65
+ previous_mammogram = random.choice([True, False])
66
+ breast_density = random.choice([
67
+ "A: Almost entirely fatty",
68
+ "B: Scattered fibroglandular",
69
+ "C: Heterogeneously dense",
70
+ "D: Extremely dense"
71
+ ])
72
+ hormone_therapy = random.choice([True, False])
73
+
74
+ return PatientMetadata(
75
+ age=age,
76
+ smoking_status=smoking_status,
77
+ family_history=family_history,
78
+ menopause_status=menopause_status,
79
+ previous_mammogram=previous_mammogram,
80
+ breast_density=breast_density,
81
+ hormone_therapy=hormone_therapy
82
+ )
83
+
84
+ def _process_image(self, image: Image.Image) -> Image.Image:
85
+ """Process input image for model consumption."""
86
+ if image.mode != 'RGB':
87
+ image = image.convert('RGB')
88
+ return image.resize((224, 224))
89
+
90
+ def _generate_xml_prompt(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str:
91
+ """Generate XML-style prompt."""
92
+ return f"""<s>[INST] Generate a structured medical report for a microwave breast imaging scan using the following format exactly.
93
+ Keep sections consistent and use proper medical terminology. Be concise yet thorough.
94
+
95
+ EXAMINATION PERFORMED:
96
+ - Microwave Breast Imaging Scan
97
+ - Date: {datetime.now().strftime('%B %d, %Y')}
98
+
99
+ IMAGING FINDINGS:
100
+ Primary Finding: {'Abnormal area detected' if has_tumor else 'No abnormalities detected'}
101
+ {f'Detected Mass Size: {tumor_size} cm' if has_tumor else ''}
102
+
103
+ PATIENT HISTORY:
104
+ - Age: {metadata.age} years
105
+ - Menopausal Status: {metadata.menopause_status}
106
+ - Previous Screening: {'Yes' if metadata.previous_mammogram else 'No'}
107
+ - Tissue Characteristics: {metadata.breast_density}
108
+
109
+ RISK FACTORS:
110
+ {f'• Family History: {"Present" if metadata.family_history else "None"}'}
111
+ • Smoking Status: {metadata.smoking_status}
112
+ • Hormone Therapy: {'Yes' if metadata.hormone_therapy else 'No'}
113
+
114
+ Please generate a report with these exact sections:
115
+
116
+ 1. DETAILED FINDINGS
117
+ [Describe the microwave imaging findings in detail, including location and characteristics of any detected abnormalities]
118
+
119
+ 2. INTERPRETATION
120
+ [Provide a clear assessment of the microwave imaging results and their clinical significance]
121
+
122
+ 3. RECOMMENDATIONS
123
+ [List specific follow-up actions and timeline]
124
+
125
+ 4. TECHNICAL NOTES
126
+ [Include any relevant information about the scan quality and any technical considerations]
127
+
128
+ Format each section consistently and maintain professional medical terminology throughout. Note that this uses microwave imaging technology, not mammography. [/INST]</s>"""
129
+
130
+ def _generate_json_prompt(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str:
131
+ """Generate JSON-style prompt."""
132
+ prompt_data = {
133
+ "instruction": "Generate a structured medical report for a microwave breast imaging scan",
134
+ "format_requirements": "Keep sections consistent and use proper medical terminology. Be concise yet thorough.",
135
+ "input_data": {
136
+ "examination": {
137
+ "type": "Microwave Breast Imaging Scan",
138
+ "date": datetime.now().strftime('%B %d, %Y')
139
+ },
140
+ "imaging_findings": {
141
+ "primary_finding": "Abnormal area detected" if has_tumor else "No abnormalities detected",
142
+ "mass_size": f"{tumor_size} cm" if has_tumor else None
143
+ },
144
+ "patient_history": {
145
+ "age": metadata.age,
146
+ "menopausal_status": metadata.menopause_status,
147
+ "previous_screening": metadata.previous_mammogram,
148
+ "tissue_characteristics": metadata.breast_density
149
+ },
150
+ "risk_factors": {
151
+ "family_history": "Present" if metadata.family_history else "None",
152
+ "smoking_status": metadata.smoking_status,
153
+ "hormone_therapy": "Yes" if metadata.hormone_therapy else "No"
154
+ }
155
+ },
156
+ "required_sections": [
157
+ "DETAILED FINDINGS",
158
+ "INTERPRETATION",
159
+ "RECOMMENDATIONS",
160
+ "TECHNICAL NOTES"
161
+ ],
162
+ "section_guidelines": {
163
+ "DETAILED_FINDINGS": "Describe the microwave imaging findings in detail, including location and characteristics of any detected abnormalities",
164
+ "INTERPRETATION": "Provide a clear assessment of the microwave imaging results and their clinical significance",
165
+ "RECOMMENDATIONS": "List specific follow-up actions and timeline",
166
+ "TECHNICAL_NOTES": "Include any relevant information about the scan quality and any technical considerations"
167
+ }
168
+ }
169
+
170
+ return f"<s>[INST] {json.dumps(prompt_data, indent=2)} [/INST]</s>"
171
+
172
+ def _generate_markdown_prompt(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str:
173
+ """Generate Markdown-style prompt."""
174
+ return f"""<s>[INST]
175
+ # Medical Report Generation Request
176
+
177
+ ## Context
178
+ Generate a structured medical report for a microwave breast imaging scan.
179
+
180
+ ## Current Examination Data
181
+ * **Type:** Microwave Breast Imaging Scan
182
+ * **Date:** {datetime.now().strftime('%B %d, %Y')}
183
+
184
+ ## Current Findings
185
+ * **Primary Finding:** {"Abnormal area detected" if has_tumor else "No abnormalities detected"}
186
+ * **Mass Size:** {f"{tumor_size} cm" if has_tumor else "N/A"}
187
+
188
+ ## Patient Information
189
+ * **Age:** {metadata.age} years
190
+ * **Menopausal Status:** {metadata.menopause_status}
191
+ * **Previous Screening:** {"Yes" if metadata.previous_mammogram else "No"}
192
+ * **Tissue Characteristics:** {metadata.breast_density}
193
+
194
+ ## Risk Assessment
195
+ * **Family History:** {"Present" if metadata.family_history else "None"}
196
+ * **Smoking Status:** {metadata.smoking_status}
197
+ * **Hormone Therapy:** {"Yes" if metadata.hormone_therapy else "No"}
198
+
199
+ ## Required Report Sections
200
+ 1. **Detailed Findings**
201
+ - Include location and characteristics of any detected abnormalities
202
+ 2. **Interpretation**
203
+ - Assess microwave imaging results and clinical significance
204
+ 3. **Recommendations**
205
+ - Specify follow-up actions and timeline
206
+ 4. **Technical Notes**
207
+ - Document scan quality and technical considerations
208
+
209
+ Please maintain professional medical terminology throughout the report.
210
+ [/INST]</s>"""
211
+
212
+ def _generate_medical_report(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str:
213
+ """Generate a standardized report for microwave breast imaging."""
214
+ # Select prompt format based on configuration
215
+ if self.prompt_format == PromptFormat.XML:
216
+ prompt = self._generate_xml_prompt(has_tumor, tumor_size, metadata)
217
+ elif self.prompt_format == PromptFormat.JSON:
218
+ prompt = self._generate_json_prompt(has_tumor, tumor_size, metadata)
219
+ else: # PromptFormat.MARKDOWN
220
+ prompt = self._generate_markdown_prompt(has_tumor, tumor_size, metadata)
221
+
222
+ # Generate response using Mistral
223
+ response = self.report_generator.text_generation(
224
+ prompt,
225
+ max_new_tokens=800,
226
+ temperature=0.3,
227
+ top_p=0.9,
228
+ repetition_penalty=1.1,
229
+ do_sample=True,
230
+ seed=42
231
+ )
232
+
233
+ # Post-process the response to ensure consistent formatting
234
+ formatted_response = f"""MICROWAVE BREAST IMAGING REPORT
235
+ Date: {datetime.now().strftime('%B %d, %Y')}
236
+ ----------------------------------------
237
+
238
+ {response.strip()}
239
+
240
+ ----------------------------------------
241
+ NOTE: This report was generated using AI assistance and should be reviewed by a qualified healthcare professional.
242
+ This screening was performed using microwave imaging technology."""
243
+
244
+ return formatted_response
245
+
246
+ def analyze(self, image: Image.Image) -> str:
247
+ """Main analysis pipeline with standardized output."""
248
+ try:
249
+ processed_image = self._process_image(image)
250
+ metadata = self._generate_synthetic_metadata()
251
+
252
+ # Detect tumor
253
+ tumor_result = self.tumor_classifier(processed_image)
254
+ has_tumor = tumor_result[0]['label'] == 'tumor'
255
+ tumor_confidence = tumor_result[0]['score']
256
+
257
+ # Measure size if tumor detected
258
+ size_result = self.size_classifier(processed_image)
259
+ tumor_size = size_result[0]['label'].replace('tumor-', '')
260
+
261
+ # Generate report
262
+ report = self._generate_medical_report(has_tumor, tumor_size, metadata)
263
+
264
+ return f"""MICROWAVE BREAST IMAGING ANALYSIS
265
+ ========================================
266
+
267
+ INITIAL SCAN ASSESSMENT:
268
+ {'⚠️ ABNORMAL FINDING DETECTED' if has_tumor else '✓ NO ABNORMALITIES DETECTED'}
269
+ Detection Confidence: {tumor_confidence:.2%}
270
+ {f'Estimated Mass Size: {tumor_size} cm' if has_tumor else ''}
271
+
272
+ ----------------------------------------
273
+ {report}"""
274
+
275
+ except Exception as e:
276
+ import traceback
277
+ return f"Error during analysis: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
278
+
279
+ def create_interface(hf_token: str, prompt_format: PromptFormat = PromptFormat.XML) -> gr.Interface:
280
+ """Create the Gradio interface."""
281
+ analyzer = MicrowaveBreastAnalyzer(hf_token, prompt_format)
282
+
283
+ interface = gr.Interface(
284
+ fn=analyzer.analyze,
285
+ inputs=[
286
+ gr.Image(type="pil", label="Upload Microwave Breast Image for Analysis")
287
+ ],
288
+ outputs=[
289
+ gr.Textbox(label="Analysis Results", lines=20)
290
+ ],
291
+ title=f"Microwave Breast Imaging Analysis System ({prompt_format.value.upper()} Format)",
292
+ description="""Upload a microwave breast image for comprehensive analysis. The system will:
293
+ 1. Detect the presence of tumors using microwave imaging technology
294
+ 2. Classify tumor size if present
295
+ 3. Generate a detailed medical report with recommendations
296
+
297
+ Note: This system uses microwave imaging technology for breast screening, which offers a safe,
298
+ radiation-free alternative to traditional mammography.""",
299
+ )
300
+
301
+ return interface
302
+
303
+ if __name__ == "__main__":
304
+ print("Starting microwave breast imaging analysis system...")
305
+ # Load HuggingFace token from secrets
306
+ HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
307
+ if not HF_TOKEN:
308
+ raise ValueError("Please set HUGGINGFACE_TOKEN environment variable")
309
+
310
+ # Create interfaces for different formats
311
+ interface_xml = create_interface(HF_TOKEN, PromptFormat.XML)
312
+ interface_json = create_interface(HF_TOKEN, PromptFormat.JSON)
313
+ interface_markdown = create_interface(HF_TOKEN, PromptFormat.MARKDOWN)
314
+
315
+ # Launch the XML version by default
316
+ interface_xml.launch(
317
+ debug=True,
318
+ server_name="0.0.0.0",
319
+ server_port=7860,
320
+ share=False
321
+ )