SMD00 commited on
Commit
1f0fa3b
·
1 Parent(s): 195d5cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -19
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import gradio as gr
2
  from PIL import Image
3
- import os
4
  import pytesseract
5
  import torch
6
  import numpy as np
@@ -8,7 +7,6 @@ import nltk
8
  nltk.download('stopwords')
9
  nltk.download('punkt')
10
  from nltk.corpus import stopwords
11
- from nltk.tokenize import word_tokenize, sent_tokenize
12
  from nltk.cluster.util import cosine_distance
13
  import networkx as nx
14
  from transformers import pipeline
@@ -28,14 +26,11 @@ def read(filepath):
28
  def clean_text(text):
29
  article = text.split(".")
30
  article=[sentence for sentence in article if sentence!=""]
31
- # print(article)
32
 
33
  sentences = []
34
 
35
  for sentence in article:
36
- #print(sentence)
37
  sentence=sentence.replace(",", " , ").replace("'", " ' ").split(" ")
38
- #sentence=sentence.replace("[^a-zA-Z]", " ").split(" ")
39
  sentence=[word for word in sentence if word!=""]
40
  sentences.append(sentence)
41
 
@@ -139,8 +134,8 @@ def important_sentences(filepath, no_of_sentences=5):
139
  def summarize(filepath):
140
  extractedInformation=read(filepath)
141
  extractedInformation=' '.join(extractedInformation.split('\n'))
142
- output = summarizer(extractedInformation, max_length=int(len(extractedInformation)/6), min_length=int(len(extractedInformation)/10), do_sample=False)
143
- return (gr.Textbox.update(output[0]["summary_text"]),gr.Button.update(visible=False),gr.Textbox.update(visible=False),gr.Dropdown.update(visible=False))
144
 
145
  def Question_Answer(filepath,question,mod):
146
  extractedInformation=read(filepath)
@@ -152,9 +147,6 @@ def Question_Answer(filepath,question,mod):
152
  obj=question_answerer(question=question, context=extractedInformation)
153
  return obj['answer']
154
 
155
- def show_fn():
156
- return (gr.Textbox.update(visible=True),gr.Button.update(visible=True),gr.Textbox.update(""))
157
-
158
  def show_fn():
159
  return (gr.Textbox.update(visible=True),gr.Button.update(visible=True),gr.Dropdown.update(visible=True),gr.Textbox.update(""))
160
  def dummy_fn(x):
@@ -166,18 +158,18 @@ with gr.Blocks() as demo:
166
  img=gr.components.Image(type="filepath", label="Input Image")
167
 
168
  with gr.Row():
169
- summary = gr.Button(value="Summary")
170
- sentence = gr.Button(value="Important Sentences")
171
- quesAndAns = gr.Button(value="Question and Answers")
172
 
173
  mode=gr.Dropdown(["Roberta","DistilBert"],label="Model",info="Choose a model",visible=False)
174
  ques_box = gr.Textbox(label="Question",info="Enter a Question",interactive=True,visible=False)
175
- submit= gr.Button(value="Submit",visible=False)
176
- out=gr.Textbox(label="Generated Text")
177
- summary.click(fn=summarize,inputs=[img],outputs=[out,submit,ques_box,mode])
178
- sentence.click(fn=important_sentences,inputs=[img],outputs=[out,submit,ques_box,mode])
179
- quesAndAns.click(fn=show_fn,outputs=[submit,ques_box,mode,out])
180
- submit.click(fn=Question_Answer,inputs=[img,ques_box,mode],outputs=[out])
181
  gr.Markdown("## Image Examples")
182
  with gr.Row():
183
  gr.Examples(
 
1
  import gradio as gr
2
  from PIL import Image
 
3
  import pytesseract
4
  import torch
5
  import numpy as np
 
7
  nltk.download('stopwords')
8
  nltk.download('punkt')
9
  from nltk.corpus import stopwords
 
10
  from nltk.cluster.util import cosine_distance
11
  import networkx as nx
12
  from transformers import pipeline
 
26
  def clean_text(text):
27
  article = text.split(".")
28
  article=[sentence for sentence in article if sentence!=""]
 
29
 
30
  sentences = []
31
 
32
  for sentence in article:
 
33
  sentence=sentence.replace(",", " , ").replace("'", " ' ").split(" ")
 
34
  sentence=[word for word in sentence if word!=""]
35
  sentences.append(sentence)
36
 
 
134
  def summarize(filepath):
135
  extractedInformation=read(filepath)
136
  extractedInformation=' '.join(extractedInformation.split('\n'))
137
+ abstractive_summary = summarizer(extractedInformation, max_length=int(len(extractedInformation)/6), min_length=int(len(extractedInformation)/10), do_sample=False)
138
+ return (gr.Textbox.update(abstractive_summary[0]["summary_text"]),gr.Button.update(visible=False),gr.Textbox.update(visible=False),gr.Dropdown.update(visible=False))
139
 
140
  def Question_Answer(filepath,question,mod):
141
  extractedInformation=read(filepath)
 
147
  obj=question_answerer(question=question, context=extractedInformation)
148
  return obj['answer']
149
 
 
 
 
150
  def show_fn():
151
  return (gr.Textbox.update(visible=True),gr.Button.update(visible=True),gr.Dropdown.update(visible=True),gr.Textbox.update(""))
152
  def dummy_fn(x):
 
158
  img=gr.components.Image(type="filepath", label="Input Image")
159
 
160
  with gr.Row():
161
+ summary_btn = gr.Button(value="Summary")
162
+ sentence_btn = gr.Button(value="Important Sentences")
163
+ quesAndAns_btn = gr.Button(value="Question and Answers")
164
 
165
  mode=gr.Dropdown(["Roberta","DistilBert"],label="Model",info="Choose a model",visible=False)
166
  ques_box = gr.Textbox(label="Question",info="Enter a Question",interactive=True,visible=False)
167
+ submit_btn= gr.Button(value="Submit",visible=False)
168
+ out_box=gr.Textbox(label="Generated Text")
169
+ summary_btn.click(fn=summarize,inputs=[img],outputs=[out_box,submit_btn,ques_box,mode])
170
+ sentence_btn.click(fn=important_sentences,inputs=[img],outputs=[out_box,submit_btn,ques_box,mode])
171
+ quesAndAns_btn.click(fn=show_fn,outputs=[submit_btn,ques_box,mode,out_box])
172
+ submit_btn.click(fn=Question_Answer,inputs=[img,ques_box,mode],outputs=[out_box])
173
  gr.Markdown("## Image Examples")
174
  with gr.Row():
175
  gr.Examples(