Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''NEURAL STYLE TRANSFER'''
|
2 |
+
|
3 |
+
|
4 |
+
"""##Importing Libraries"""
|
5 |
+
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import tensorflow as tf
|
9 |
+
# import os
|
10 |
+
import PIL
|
11 |
+
from PIL import Image,ImageOps
|
12 |
+
import numpy as np
|
13 |
+
# import time
|
14 |
+
# import requests
|
15 |
+
import cv2
|
16 |
+
from cv2 import *
|
17 |
+
|
18 |
+
# !mkdir nstmodel
|
19 |
+
# !wget -c https://storage.googleapis.com/tfhub-modules/google/magenta/arbitrary-image-stylization-v1-256/2.tar.gz -O - | tar -xz -C /nstmodel
|
20 |
+
# import tensorflow.keras
|
21 |
+
|
22 |
+
# from PIL import Image, ImageOps
|
23 |
+
#import requests
|
24 |
+
#import tarfile
|
25 |
+
'''
|
26 |
+
url = "https://storage.googleapis.com/tfhub-modules/google/magenta/arbitrary-image-stylization-v1-256/2.tar.gz"
|
27 |
+
response = requests.get(url,stream=True)
|
28 |
+
path_input="./"
|
29 |
+
urllib.request.urlretrieve(url, filename=path_input)
|
30 |
+
file = tarfile.open(fileobj=response.raw, mode="r|gz")
|
31 |
+
file.extractall(path="./nst_model")
|
32 |
+
'''
|
33 |
+
MODEL_PATH='Nst model'
|
34 |
+
|
35 |
+
# Disable scientific notation for clarity
|
36 |
+
np.set_printoptions(suppress=True)
|
37 |
+
|
38 |
+
# Load the model
|
39 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
40 |
+
|
41 |
+
def tensor_to_image(tensor):
|
42 |
+
tensor = tensor*255
|
43 |
+
tensor = np.array(tensor, dtype=np.uint8)
|
44 |
+
if np.ndim(tensor)>3:
|
45 |
+
assert tensor.shape[0] == 1
|
46 |
+
tensor = tensor[0]
|
47 |
+
return PIL.Image.fromarray(tensor)
|
48 |
+
|
49 |
+
"""##Saving unscaled Tensor images."""
|
50 |
+
|
51 |
+
def save_image(image, filename):
|
52 |
+
"""
|
53 |
+
Saves unscaled Tensor Images.
|
54 |
+
Args:
|
55 |
+
image: 3D image tensor. [height, width, channels]
|
56 |
+
filename: Name of the file to save to.
|
57 |
+
"""
|
58 |
+
if not isinstance(image, Image.Image):
|
59 |
+
image = tf.clip_by_value(image, 0, 255)
|
60 |
+
image = Image.fromarray(tf.cast(image, tf.uint8).numpy())
|
61 |
+
image.save("%s.jpg" % filename)
|
62 |
+
print("Saved as %s.jpg" % filename)
|
63 |
+
|
64 |
+
"""## Grayscaling image for testing purpose to check if we could get better results."""
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
def gray_scaled(inp_img):
|
69 |
+
gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY)
|
70 |
+
gray_img = np.zeros_like(inp_img)
|
71 |
+
gray_img[:,:,0] = gray
|
72 |
+
gray_img[:,:,1] = gray
|
73 |
+
gray_img[:,:,2] = gray
|
74 |
+
return gray_img
|
75 |
+
|
76 |
+
def transform_mymodel(content_image,style_image):
|
77 |
+
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]
|
78 |
+
content_image=gray_scaled(content_image)
|
79 |
+
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.0
|
80 |
+
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.0
|
81 |
+
|
82 |
+
#Resizing image
|
83 |
+
style_image = tf.image.resize(style_image, (256, 256))
|
84 |
+
|
85 |
+
# Stylize image
|
86 |
+
outputs = model(tf.constant(content_image), tf.constant(style_image))
|
87 |
+
stylized_image = outputs[0]
|
88 |
+
|
89 |
+
# stylized = tf.image.resize(stylized_image, (356, 356))
|
90 |
+
stylized_image =tensor_to_image(stylized_image)
|
91 |
+
save_image(stylized_image,'stylized')
|
92 |
+
return stylized_image
|
93 |
+
|
94 |
+
def gradio_intrface(mymodel):
|
95 |
+
# Initializing the input component
|
96 |
+
image1 = gr.inputs.Image() #CONTENT IMAGE
|
97 |
+
image2 = gr.inputs.Image() #STYLE IMAGE
|
98 |
+
stylizedimg=gr.outputs.Image()
|
99 |
+
gr.Interface(fn=mymodel, inputs= [image1,image2] , outputs= stylizedimg,title='Style Transfer').launch()
|
100 |
+
|
101 |
+
"""The function will be launched both Inline and Outline where u need to add a content and style image."""
|
102 |
+
|
103 |
+
|
104 |
+
gradio_intrface(transform_mymodel)
|
105 |
+
|
106 |
+
|
107 |
+
|