Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
os.system('git clone https://github.com/WongKinYiu/yolov7') | |
def detect(inp): | |
os.system('python ./yolov7/detect.py --weights best.pt --conf 0.25 --img-size 640 --source f{inp} --project ./yolov7/runs/detect ') | |
otp=inp.split('/')[2] | |
return f"./yolov7/runs/detect/exp/*" | |
#f"./yolov7/runs/detect/exp/{otp}" | |
def custom(path_or_model='path/to/model.pt', autoshape=True): | |
"""custom mode | |
Arguments (3 options): | |
path_or_model (str): 'path/to/model.pt' | |
path_or_model (dict): torch.load('path/to/model.pt') | |
path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] | |
Returns: | |
pytorch model | |
""" | |
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint | |
if isinstance(model, dict): | |
model = model['ema' if model.get('ema') else 'model'] # load model | |
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create | |
hub_model.load_state_dict(model.float().state_dict()) # load state_dict | |
hub_model.names = model.names # class names | |
if autoshape: | |
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS | |
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available | |
return hub_model.to(device) | |
model = custom(path_or_model='best.pt') | |
def detect1(inp): | |
#g = (size / max(inp.size)) #gain | |
#im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize | |
results = model(inp,size=640) # inference | |
results.render() # updates results.imgs with boxes and labels | |
return Image.fromarray(results.imgs[0]) | |
inp = gr.inputs.Image(type="filepath", label="Input") | |
#output=gr.outputs.Image(type="pil", label="Output Image") | |
output = gr.outputs.Image(type="filepath", label="Output") | |
#.outputs.Textbox() | |
io=gr.Interface(fn=detect1, inputs=inp, outputs=output, title='Pot Hole Detection With Custom YOLOv7 ', | |
#examples=[["Examples/img-300_jpg.rf.6b7b035dff1cda092ce3dc22be8d0135.jpg"]] | |
) | |
#,examples=["Examples/img-300_jpg.rf.6b7b035dff1cda092ce3dc22be8d0135.jpg"] | |
io.launch(debug=True,share=False) | |