Sa-m commited on
Commit
0093401
·
1 Parent(s): 75b34ea

Upload experimental.py

Browse files
Files changed (1) hide show
  1. models/experimental.py +262 -0
models/experimental.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ from models.common import Conv, DWConv
7
+ from utils.google_utils import attempt_download
8
+
9
+
10
+ class CrossConv(nn.Module):
11
+ # Cross Convolution Downsample
12
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
+ super(CrossConv, self).__init__()
15
+ c_ = int(c2 * e) # hidden channels
16
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
+ self.add = shortcut and c1 == c2
19
+
20
+ def forward(self, x):
21
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
+
23
+
24
+ class Sum(nn.Module):
25
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26
+ def __init__(self, n, weight=False): # n: number of inputs
27
+ super(Sum, self).__init__()
28
+ self.weight = weight # apply weights boolean
29
+ self.iter = range(n - 1) # iter object
30
+ if weight:
31
+ self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32
+
33
+ def forward(self, x):
34
+ y = x[0] # no weight
35
+ if self.weight:
36
+ w = torch.sigmoid(self.w) * 2
37
+ for i in self.iter:
38
+ y = y + x[i + 1] * w[i]
39
+ else:
40
+ for i in self.iter:
41
+ y = y + x[i + 1]
42
+ return y
43
+
44
+
45
+ class MixConv2d(nn.Module):
46
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48
+ super(MixConv2d, self).__init__()
49
+ groups = len(k)
50
+ if equal_ch: # equal c_ per group
51
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53
+ else: # equal weight.numel() per group
54
+ b = [c2] + [0] * groups
55
+ a = np.eye(groups + 1, groups, k=-1)
56
+ a -= np.roll(a, 1, axis=1)
57
+ a *= np.array(k) ** 2
58
+ a[0] = 1
59
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60
+
61
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62
+ self.bn = nn.BatchNorm2d(c2)
63
+ self.act = nn.LeakyReLU(0.1, inplace=True)
64
+
65
+ def forward(self, x):
66
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67
+
68
+
69
+ class Ensemble(nn.ModuleList):
70
+ # Ensemble of models
71
+ def __init__(self):
72
+ super(Ensemble, self).__init__()
73
+
74
+ def forward(self, x, augment=False):
75
+ y = []
76
+ for module in self:
77
+ y.append(module(x, augment)[0])
78
+ # y = torch.stack(y).max(0)[0] # max ensemble
79
+ # y = torch.stack(y).mean(0) # mean ensemble
80
+ y = torch.cat(y, 1) # nms ensemble
81
+ return y, None # inference, train output
82
+
83
+
84
+
85
+
86
+
87
+ class ORT_NMS(torch.autograd.Function):
88
+ '''ONNX-Runtime NMS operation'''
89
+ @staticmethod
90
+ def forward(ctx,
91
+ boxes,
92
+ scores,
93
+ max_output_boxes_per_class=torch.tensor([100]),
94
+ iou_threshold=torch.tensor([0.45]),
95
+ score_threshold=torch.tensor([0.25])):
96
+ device = boxes.device
97
+ batch = scores.shape[0]
98
+ num_det = random.randint(0, 100)
99
+ batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100
+ idxs = torch.arange(100, 100 + num_det).to(device)
101
+ zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102
+ selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103
+ selected_indices = selected_indices.to(torch.int64)
104
+ return selected_indices
105
+
106
+ @staticmethod
107
+ def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108
+ return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109
+
110
+
111
+ class TRT_NMS(torch.autograd.Function):
112
+ '''TensorRT NMS operation'''
113
+ @staticmethod
114
+ def forward(
115
+ ctx,
116
+ boxes,
117
+ scores,
118
+ background_class=-1,
119
+ box_coding=1,
120
+ iou_threshold=0.45,
121
+ max_output_boxes=100,
122
+ plugin_version="1",
123
+ score_activation=0,
124
+ score_threshold=0.25,
125
+ ):
126
+ batch_size, num_boxes, num_classes = scores.shape
127
+ num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128
+ det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129
+ det_scores = torch.randn(batch_size, max_output_boxes)
130
+ det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131
+ return num_det, det_boxes, det_scores, det_classes
132
+
133
+ @staticmethod
134
+ def symbolic(g,
135
+ boxes,
136
+ scores,
137
+ background_class=-1,
138
+ box_coding=1,
139
+ iou_threshold=0.45,
140
+ max_output_boxes=100,
141
+ plugin_version="1",
142
+ score_activation=0,
143
+ score_threshold=0.25):
144
+ out = g.op("TRT::EfficientNMS_TRT",
145
+ boxes,
146
+ scores,
147
+ background_class_i=background_class,
148
+ box_coding_i=box_coding,
149
+ iou_threshold_f=iou_threshold,
150
+ max_output_boxes_i=max_output_boxes,
151
+ plugin_version_s=plugin_version,
152
+ score_activation_i=score_activation,
153
+ score_threshold_f=score_threshold,
154
+ outputs=4)
155
+ nums, boxes, scores, classes = out
156
+ return nums, boxes, scores, classes
157
+
158
+
159
+ class ONNX_ORT(nn.Module):
160
+ '''onnx module with ONNX-Runtime NMS operation.'''
161
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None):
162
+ super().__init__()
163
+ self.device = device if device else torch.device("cpu")
164
+ self.max_obj = torch.tensor([max_obj]).to(device)
165
+ self.iou_threshold = torch.tensor([iou_thres]).to(device)
166
+ self.score_threshold = torch.tensor([score_thres]).to(device)
167
+ self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168
+ self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169
+ dtype=torch.float32,
170
+ device=self.device)
171
+
172
+ def forward(self, x):
173
+ boxes = x[:, :, :4]
174
+ conf = x[:, :, 4:5]
175
+ scores = x[:, :, 5:]
176
+ scores *= conf
177
+ boxes @= self.convert_matrix
178
+ max_score, category_id = scores.max(2, keepdim=True)
179
+ dis = category_id.float() * self.max_wh
180
+ nmsbox = boxes + dis
181
+ max_score_tp = max_score.transpose(1, 2).contiguous()
182
+ selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
183
+ X, Y = selected_indices[:, 0], selected_indices[:, 2]
184
+ selected_boxes = boxes[X, Y, :]
185
+ selected_categories = category_id[X, Y, :].float()
186
+ selected_scores = max_score[X, Y, :]
187
+ X = X.unsqueeze(1).float()
188
+ return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
189
+
190
+ class ONNX_TRT(nn.Module):
191
+ '''onnx module with TensorRT NMS operation.'''
192
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None):
193
+ super().__init__()
194
+ assert max_wh is None
195
+ self.device = device if device else torch.device('cpu')
196
+ self.background_class = -1,
197
+ self.box_coding = 1,
198
+ self.iou_threshold = iou_thres
199
+ self.max_obj = max_obj
200
+ self.plugin_version = '1'
201
+ self.score_activation = 0
202
+ self.score_threshold = score_thres
203
+
204
+ def forward(self, x):
205
+ boxes = x[:, :, :4]
206
+ conf = x[:, :, 4:5]
207
+ scores = x[:, :, 5:]
208
+ scores *= conf
209
+ num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
210
+ self.iou_threshold, self.max_obj,
211
+ self.plugin_version, self.score_activation,
212
+ self.score_threshold)
213
+ return num_det, det_boxes, det_scores, det_classes
214
+
215
+
216
+ class End2End(nn.Module):
217
+ '''export onnx or tensorrt model with NMS operation.'''
218
+ def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None):
219
+ super().__init__()
220
+ device = device if device else torch.device('cpu')
221
+ assert isinstance(max_wh,(int)) or max_wh is None
222
+ self.model = model.to(device)
223
+ self.model.model[-1].end2end = True
224
+ self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
225
+ self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device)
226
+ self.end2end.eval()
227
+
228
+ def forward(self, x):
229
+ x = self.model(x)
230
+ x = self.end2end(x)
231
+ return x
232
+
233
+
234
+
235
+
236
+
237
+ def attempt_load(weights, map_location=None):
238
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
239
+ model = Ensemble()
240
+ for w in weights if isinstance(weights, list) else [weights]:
241
+ attempt_download(w)
242
+ ckpt = torch.load(w, map_location=map_location) # load
243
+ model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
244
+
245
+ # Compatibility updates
246
+ for m in model.modules():
247
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
248
+ m.inplace = True # pytorch 1.7.0 compatibility
249
+ elif type(m) is nn.Upsample:
250
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
251
+ elif type(m) is Conv:
252
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
253
+
254
+ if len(model) == 1:
255
+ return model[-1] # return model
256
+ else:
257
+ print('Ensemble created with %s\n' % weights)
258
+ for k in ['names', 'stride']:
259
+ setattr(model, k, getattr(model[-1], k))
260
+ return model # return ensemble
261
+
262
+