Sa-m commited on
Commit
3f6c727
·
1 Parent(s): 3938920

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py CHANGED
@@ -12,6 +12,54 @@ def detect(inp):
12
  #f"./yolov7/runs/detect/exp/{otp}"
13
 
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  opt = {
16
 
17
  "weights": "best.pt", # Path to weights file default weights are for nano model
 
12
  #f"./yolov7/runs/detect/exp/{otp}"
13
 
14
 
15
+
16
+
17
+ import argparse
18
+ from pathlib import Path
19
+ import cv2
20
+ import torch
21
+ import numpy as np
22
+ from numpy import random
23
+ from models.experimental import attempt_load
24
+ from utils.datasets import LoadStreams, LoadImages
25
+ from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier,scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
26
+ from utils.plots import plot_one_box
27
+ from utils.torch_utils import select_device, time_synchronized
28
+
29
+
30
+ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
31
+ # Resize and pad image while meeting stride-multiple constraints
32
+ shape = img.shape[:2] # current shape [height, width]
33
+ if isinstance(new_shape, int):
34
+ new_shape = (new_shape, new_shape)
35
+
36
+ # Scale ratio (new / old)
37
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
38
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
39
+ r = min(r, 1.0)
40
+
41
+ # Compute padding
42
+ ratio = r, r # width, height ratios
43
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
44
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
45
+ if auto: # minimum rectangle
46
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
47
+ elif scaleFill: # stretch
48
+ dw, dh = 0.0, 0.0
49
+ new_unpad = (new_shape[1], new_shape[0])
50
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
51
+
52
+ dw /= 2 # divide padding into 2 sides
53
+ dh /= 2
54
+
55
+ if shape[::-1] != new_unpad: # resize
56
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
57
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
58
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
59
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
60
+ return img, ratio, (dw, dh)
61
+
62
+
63
  opt = {
64
 
65
  "weights": "best.pt", # Path to weights file default weights are for nano model