Spaces:
Runtime error
Runtime error
Upload general.py
Browse files- utils/general.py +891 -0
utils/general.py
ADDED
@@ -0,0 +1,891 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOR general utils
|
2 |
+
|
3 |
+
import glob
|
4 |
+
import logging
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import platform
|
8 |
+
import random
|
9 |
+
import re
|
10 |
+
import subprocess
|
11 |
+
import time
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import pandas as pd
|
17 |
+
import torch
|
18 |
+
import torchvision
|
19 |
+
import yaml
|
20 |
+
|
21 |
+
from utils.google_utils import gsutil_getsize
|
22 |
+
from utils.metrics import fitness
|
23 |
+
from utils.torch_utils import init_torch_seeds
|
24 |
+
|
25 |
+
# Settings
|
26 |
+
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
27 |
+
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
28 |
+
pd.options.display.max_columns = 10
|
29 |
+
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
30 |
+
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
|
31 |
+
|
32 |
+
|
33 |
+
def set_logging(rank=-1):
|
34 |
+
logging.basicConfig(
|
35 |
+
format="%(message)s",
|
36 |
+
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
37 |
+
|
38 |
+
|
39 |
+
def init_seeds(seed=0):
|
40 |
+
# Initialize random number generator (RNG) seeds
|
41 |
+
random.seed(seed)
|
42 |
+
np.random.seed(seed)
|
43 |
+
init_torch_seeds(seed)
|
44 |
+
|
45 |
+
|
46 |
+
def get_latest_run(search_dir='.'):
|
47 |
+
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
48 |
+
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
49 |
+
return max(last_list, key=os.path.getctime) if last_list else ''
|
50 |
+
|
51 |
+
|
52 |
+
def isdocker():
|
53 |
+
# Is environment a Docker container
|
54 |
+
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
|
55 |
+
|
56 |
+
|
57 |
+
def emojis(str=''):
|
58 |
+
# Return platform-dependent emoji-safe version of string
|
59 |
+
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
60 |
+
|
61 |
+
|
62 |
+
def check_online():
|
63 |
+
# Check internet connectivity
|
64 |
+
import socket
|
65 |
+
try:
|
66 |
+
socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
|
67 |
+
return True
|
68 |
+
except OSError:
|
69 |
+
return False
|
70 |
+
|
71 |
+
|
72 |
+
def check_git_status():
|
73 |
+
# Recommend 'git pull' if code is out of date
|
74 |
+
print(colorstr('github: '), end='')
|
75 |
+
try:
|
76 |
+
assert Path('.git').exists(), 'skipping check (not a git repository)'
|
77 |
+
assert not isdocker(), 'skipping check (Docker image)'
|
78 |
+
assert check_online(), 'skipping check (offline)'
|
79 |
+
|
80 |
+
cmd = 'git fetch && git config --get remote.origin.url'
|
81 |
+
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
|
82 |
+
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
|
83 |
+
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
|
84 |
+
if n > 0:
|
85 |
+
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
|
86 |
+
f"Use 'git pull' to update or 'git clone {url}' to download latest."
|
87 |
+
else:
|
88 |
+
s = f'up to date with {url} ✅'
|
89 |
+
print(emojis(s)) # emoji-safe
|
90 |
+
except Exception as e:
|
91 |
+
print(e)
|
92 |
+
|
93 |
+
|
94 |
+
def check_requirements(requirements='requirements.txt', exclude=()):
|
95 |
+
# Check installed dependencies meet requirements (pass *.txt file or list of packages)
|
96 |
+
import pkg_resources as pkg
|
97 |
+
prefix = colorstr('red', 'bold', 'requirements:')
|
98 |
+
if isinstance(requirements, (str, Path)): # requirements.txt file
|
99 |
+
file = Path(requirements)
|
100 |
+
if not file.exists():
|
101 |
+
print(f"{prefix} {file.resolve()} not found, check failed.")
|
102 |
+
return
|
103 |
+
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
|
104 |
+
else: # list or tuple of packages
|
105 |
+
requirements = [x for x in requirements if x not in exclude]
|
106 |
+
|
107 |
+
n = 0 # number of packages updates
|
108 |
+
for r in requirements:
|
109 |
+
try:
|
110 |
+
pkg.require(r)
|
111 |
+
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
|
112 |
+
n += 1
|
113 |
+
print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
|
114 |
+
print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
|
115 |
+
|
116 |
+
if n: # if packages updated
|
117 |
+
source = file.resolve() if 'file' in locals() else requirements
|
118 |
+
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
119 |
+
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
120 |
+
print(emojis(s)) # emoji-safe
|
121 |
+
|
122 |
+
|
123 |
+
def check_img_size(img_size, s=32):
|
124 |
+
# Verify img_size is a multiple of stride s
|
125 |
+
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
|
126 |
+
if new_size != img_size:
|
127 |
+
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
|
128 |
+
return new_size
|
129 |
+
|
130 |
+
|
131 |
+
def check_imshow():
|
132 |
+
# Check if environment supports image displays
|
133 |
+
try:
|
134 |
+
assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
|
135 |
+
cv2.imshow('test', np.zeros((1, 1, 3)))
|
136 |
+
cv2.waitKey(1)
|
137 |
+
cv2.destroyAllWindows()
|
138 |
+
cv2.waitKey(1)
|
139 |
+
return True
|
140 |
+
except Exception as e:
|
141 |
+
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
|
142 |
+
return False
|
143 |
+
|
144 |
+
|
145 |
+
def check_file(file):
|
146 |
+
# Search for file if not found
|
147 |
+
if Path(file).is_file() or file == '':
|
148 |
+
return file
|
149 |
+
else:
|
150 |
+
files = glob.glob('./**/' + file, recursive=True) # find file
|
151 |
+
assert len(files), f'File Not Found: {file}' # assert file was found
|
152 |
+
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
|
153 |
+
return files[0] # return file
|
154 |
+
|
155 |
+
|
156 |
+
def check_dataset(dict):
|
157 |
+
# Download dataset if not found locally
|
158 |
+
val, s = dict.get('val'), dict.get('download')
|
159 |
+
if val and len(val):
|
160 |
+
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
161 |
+
if not all(x.exists() for x in val):
|
162 |
+
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
|
163 |
+
if s and len(s): # download script
|
164 |
+
print('Downloading %s ...' % s)
|
165 |
+
if s.startswith('http') and s.endswith('.zip'): # URL
|
166 |
+
f = Path(s).name # filename
|
167 |
+
torch.hub.download_url_to_file(s, f)
|
168 |
+
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
|
169 |
+
else: # bash script
|
170 |
+
r = os.system(s)
|
171 |
+
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
172 |
+
else:
|
173 |
+
raise Exception('Dataset not found.')
|
174 |
+
|
175 |
+
|
176 |
+
def make_divisible(x, divisor):
|
177 |
+
# Returns x evenly divisible by divisor
|
178 |
+
return math.ceil(x / divisor) * divisor
|
179 |
+
|
180 |
+
|
181 |
+
def clean_str(s):
|
182 |
+
# Cleans a string by replacing special characters with underscore _
|
183 |
+
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
184 |
+
|
185 |
+
|
186 |
+
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
187 |
+
# lambda function for sinusoidal ramp from y1 to y2
|
188 |
+
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
189 |
+
|
190 |
+
|
191 |
+
def colorstr(*input):
|
192 |
+
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
193 |
+
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
194 |
+
colors = {'black': '\033[30m', # basic colors
|
195 |
+
'red': '\033[31m',
|
196 |
+
'green': '\033[32m',
|
197 |
+
'yellow': '\033[33m',
|
198 |
+
'blue': '\033[34m',
|
199 |
+
'magenta': '\033[35m',
|
200 |
+
'cyan': '\033[36m',
|
201 |
+
'white': '\033[37m',
|
202 |
+
'bright_black': '\033[90m', # bright colors
|
203 |
+
'bright_red': '\033[91m',
|
204 |
+
'bright_green': '\033[92m',
|
205 |
+
'bright_yellow': '\033[93m',
|
206 |
+
'bright_blue': '\033[94m',
|
207 |
+
'bright_magenta': '\033[95m',
|
208 |
+
'bright_cyan': '\033[96m',
|
209 |
+
'bright_white': '\033[97m',
|
210 |
+
'end': '\033[0m', # misc
|
211 |
+
'bold': '\033[1m',
|
212 |
+
'underline': '\033[4m'}
|
213 |
+
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
214 |
+
|
215 |
+
|
216 |
+
def labels_to_class_weights(labels, nc=80):
|
217 |
+
# Get class weights (inverse frequency) from training labels
|
218 |
+
if labels[0] is None: # no labels loaded
|
219 |
+
return torch.Tensor()
|
220 |
+
|
221 |
+
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
222 |
+
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
223 |
+
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
224 |
+
|
225 |
+
# Prepend gridpoint count (for uCE training)
|
226 |
+
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
227 |
+
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
228 |
+
|
229 |
+
weights[weights == 0] = 1 # replace empty bins with 1
|
230 |
+
weights = 1 / weights # number of targets per class
|
231 |
+
weights /= weights.sum() # normalize
|
232 |
+
return torch.from_numpy(weights)
|
233 |
+
|
234 |
+
|
235 |
+
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
236 |
+
# Produces image weights based on class_weights and image contents
|
237 |
+
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
|
238 |
+
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
239 |
+
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
240 |
+
return image_weights
|
241 |
+
|
242 |
+
|
243 |
+
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
244 |
+
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
245 |
+
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
246 |
+
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
247 |
+
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
248 |
+
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
249 |
+
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
250 |
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
251 |
+
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
252 |
+
return x
|
253 |
+
|
254 |
+
|
255 |
+
def xyxy2xywh(x):
|
256 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
257 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
258 |
+
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
259 |
+
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
260 |
+
y[:, 2] = x[:, 2] - x[:, 0] # width
|
261 |
+
y[:, 3] = x[:, 3] - x[:, 1] # height
|
262 |
+
return y
|
263 |
+
|
264 |
+
|
265 |
+
def xywh2xyxy(x):
|
266 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
267 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
268 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
269 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
270 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
271 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
272 |
+
return y
|
273 |
+
|
274 |
+
|
275 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
276 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
277 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
278 |
+
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
279 |
+
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
|
280 |
+
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
|
281 |
+
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
|
282 |
+
return y
|
283 |
+
|
284 |
+
|
285 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
286 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
287 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
288 |
+
y[:, 0] = w * x[:, 0] + padw # top left x
|
289 |
+
y[:, 1] = h * x[:, 1] + padh # top left y
|
290 |
+
return y
|
291 |
+
|
292 |
+
|
293 |
+
def segment2box(segment, width=640, height=640):
|
294 |
+
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
295 |
+
x, y = segment.T # segment xy
|
296 |
+
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
297 |
+
x, y, = x[inside], y[inside]
|
298 |
+
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
|
299 |
+
|
300 |
+
|
301 |
+
def segments2boxes(segments):
|
302 |
+
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
303 |
+
boxes = []
|
304 |
+
for s in segments:
|
305 |
+
x, y = s.T # segment xy
|
306 |
+
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
307 |
+
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
308 |
+
|
309 |
+
|
310 |
+
def resample_segments(segments, n=1000):
|
311 |
+
# Up-sample an (n,2) segment
|
312 |
+
for i, s in enumerate(segments):
|
313 |
+
x = np.linspace(0, len(s) - 1, n)
|
314 |
+
xp = np.arange(len(s))
|
315 |
+
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
316 |
+
return segments
|
317 |
+
|
318 |
+
|
319 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
320 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
321 |
+
if ratio_pad is None: # calculate from img0_shape
|
322 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
323 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
324 |
+
else:
|
325 |
+
gain = ratio_pad[0][0]
|
326 |
+
pad = ratio_pad[1]
|
327 |
+
|
328 |
+
coords[:, [0, 2]] -= pad[0] # x padding
|
329 |
+
coords[:, [1, 3]] -= pad[1] # y padding
|
330 |
+
coords[:, :4] /= gain
|
331 |
+
clip_coords(coords, img0_shape)
|
332 |
+
return coords
|
333 |
+
|
334 |
+
|
335 |
+
def clip_coords(boxes, img_shape):
|
336 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
337 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
338 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
339 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
340 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
341 |
+
|
342 |
+
|
343 |
+
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
344 |
+
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
345 |
+
box2 = box2.T
|
346 |
+
|
347 |
+
# Get the coordinates of bounding boxes
|
348 |
+
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
349 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
350 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
351 |
+
else: # transform from xywh to xyxy
|
352 |
+
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
353 |
+
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
354 |
+
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
355 |
+
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
356 |
+
|
357 |
+
# Intersection area
|
358 |
+
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
359 |
+
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
360 |
+
|
361 |
+
# Union Area
|
362 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
363 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
364 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
365 |
+
|
366 |
+
iou = inter / union
|
367 |
+
|
368 |
+
if GIoU or DIoU or CIoU:
|
369 |
+
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
370 |
+
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
371 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
372 |
+
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
373 |
+
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
374 |
+
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
|
375 |
+
if DIoU:
|
376 |
+
return iou - rho2 / c2 # DIoU
|
377 |
+
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
378 |
+
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
|
379 |
+
with torch.no_grad():
|
380 |
+
alpha = v / (v - iou + (1 + eps))
|
381 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
382 |
+
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
383 |
+
c_area = cw * ch + eps # convex area
|
384 |
+
return iou - (c_area - union) / c_area # GIoU
|
385 |
+
else:
|
386 |
+
return iou # IoU
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
|
392 |
+
# Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
|
393 |
+
box2 = box2.T
|
394 |
+
|
395 |
+
# Get the coordinates of bounding boxes
|
396 |
+
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
397 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
398 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
399 |
+
else: # transform from xywh to xyxy
|
400 |
+
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
401 |
+
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
402 |
+
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
403 |
+
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
404 |
+
|
405 |
+
# Intersection area
|
406 |
+
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
407 |
+
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
408 |
+
|
409 |
+
# Union Area
|
410 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
411 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
412 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
413 |
+
|
414 |
+
# change iou into pow(iou+eps)
|
415 |
+
# iou = inter / union
|
416 |
+
iou = torch.pow(inter/union + eps, alpha)
|
417 |
+
# beta = 2 * alpha
|
418 |
+
if GIoU or DIoU or CIoU:
|
419 |
+
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
420 |
+
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
421 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
422 |
+
c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
|
423 |
+
rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
|
424 |
+
rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
|
425 |
+
rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
|
426 |
+
if DIoU:
|
427 |
+
return iou - rho2 / c2 # DIoU
|
428 |
+
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
429 |
+
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
430 |
+
with torch.no_grad():
|
431 |
+
alpha_ciou = v / ((1 + eps) - inter / union + v)
|
432 |
+
# return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
|
433 |
+
return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
|
434 |
+
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
435 |
+
# c_area = cw * ch + eps # convex area
|
436 |
+
# return iou - (c_area - union) / c_area # GIoU
|
437 |
+
c_area = torch.max(cw * ch + eps, union) # convex area
|
438 |
+
return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
|
439 |
+
else:
|
440 |
+
return iou # torch.log(iou+eps) or iou
|
441 |
+
|
442 |
+
|
443 |
+
def box_iou(box1, box2):
|
444 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
445 |
+
"""
|
446 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
447 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
448 |
+
Arguments:
|
449 |
+
box1 (Tensor[N, 4])
|
450 |
+
box2 (Tensor[M, 4])
|
451 |
+
Returns:
|
452 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
453 |
+
IoU values for every element in boxes1 and boxes2
|
454 |
+
"""
|
455 |
+
|
456 |
+
def box_area(box):
|
457 |
+
# box = 4xn
|
458 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
459 |
+
|
460 |
+
area1 = box_area(box1.T)
|
461 |
+
area2 = box_area(box2.T)
|
462 |
+
|
463 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
464 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
465 |
+
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
466 |
+
|
467 |
+
|
468 |
+
def wh_iou(wh1, wh2):
|
469 |
+
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
470 |
+
wh1 = wh1[:, None] # [N,1,2]
|
471 |
+
wh2 = wh2[None] # [1,M,2]
|
472 |
+
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
473 |
+
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
474 |
+
|
475 |
+
|
476 |
+
def box_giou(box1, box2):
|
477 |
+
"""
|
478 |
+
Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
|
479 |
+
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
|
480 |
+
``0 <= x1 < x2`` and ``0 <= y1 < y2``.
|
481 |
+
Args:
|
482 |
+
boxes1 (Tensor[N, 4]): first set of boxes
|
483 |
+
boxes2 (Tensor[M, 4]): second set of boxes
|
484 |
+
Returns:
|
485 |
+
Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
|
486 |
+
for every element in boxes1 and boxes2
|
487 |
+
"""
|
488 |
+
|
489 |
+
def box_area(box):
|
490 |
+
# box = 4xn
|
491 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
492 |
+
|
493 |
+
area1 = box_area(box1.T)
|
494 |
+
area2 = box_area(box2.T)
|
495 |
+
|
496 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
497 |
+
union = (area1[:, None] + area2 - inter)
|
498 |
+
|
499 |
+
iou = inter / union
|
500 |
+
|
501 |
+
lti = torch.min(box1[:, None, :2], box2[:, :2])
|
502 |
+
rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
|
503 |
+
|
504 |
+
whi = (rbi - lti).clamp(min=0) # [N,M,2]
|
505 |
+
areai = whi[:, :, 0] * whi[:, :, 1]
|
506 |
+
|
507 |
+
return iou - (areai - union) / areai
|
508 |
+
|
509 |
+
|
510 |
+
def box_ciou(box1, box2, eps: float = 1e-7):
|
511 |
+
"""
|
512 |
+
Return complete intersection-over-union (Jaccard index) between two sets of boxes.
|
513 |
+
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
|
514 |
+
``0 <= x1 < x2`` and ``0 <= y1 < y2``.
|
515 |
+
Args:
|
516 |
+
boxes1 (Tensor[N, 4]): first set of boxes
|
517 |
+
boxes2 (Tensor[M, 4]): second set of boxes
|
518 |
+
eps (float, optional): small number to prevent division by zero. Default: 1e-7
|
519 |
+
Returns:
|
520 |
+
Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
|
521 |
+
for every element in boxes1 and boxes2
|
522 |
+
"""
|
523 |
+
|
524 |
+
def box_area(box):
|
525 |
+
# box = 4xn
|
526 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
527 |
+
|
528 |
+
area1 = box_area(box1.T)
|
529 |
+
area2 = box_area(box2.T)
|
530 |
+
|
531 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
532 |
+
union = (area1[:, None] + area2 - inter)
|
533 |
+
|
534 |
+
iou = inter / union
|
535 |
+
|
536 |
+
lti = torch.min(box1[:, None, :2], box2[:, :2])
|
537 |
+
rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
|
538 |
+
|
539 |
+
whi = (rbi - lti).clamp(min=0) # [N,M,2]
|
540 |
+
diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
|
541 |
+
|
542 |
+
# centers of boxes
|
543 |
+
x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
|
544 |
+
y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
|
545 |
+
x_g = (box2[:, 0] + box2[:, 2]) / 2
|
546 |
+
y_g = (box2[:, 1] + box2[:, 3]) / 2
|
547 |
+
# The distance between boxes' centers squared.
|
548 |
+
centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
|
549 |
+
|
550 |
+
w_pred = box1[:, None, 2] - box1[:, None, 0]
|
551 |
+
h_pred = box1[:, None, 3] - box1[:, None, 1]
|
552 |
+
|
553 |
+
w_gt = box2[:, 2] - box2[:, 0]
|
554 |
+
h_gt = box2[:, 3] - box2[:, 1]
|
555 |
+
|
556 |
+
v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
|
557 |
+
with torch.no_grad():
|
558 |
+
alpha = v / (1 - iou + v + eps)
|
559 |
+
return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
|
560 |
+
|
561 |
+
|
562 |
+
def box_diou(box1, box2, eps: float = 1e-7):
|
563 |
+
"""
|
564 |
+
Return distance intersection-over-union (Jaccard index) between two sets of boxes.
|
565 |
+
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
|
566 |
+
``0 <= x1 < x2`` and ``0 <= y1 < y2``.
|
567 |
+
Args:
|
568 |
+
boxes1 (Tensor[N, 4]): first set of boxes
|
569 |
+
boxes2 (Tensor[M, 4]): second set of boxes
|
570 |
+
eps (float, optional): small number to prevent division by zero. Default: 1e-7
|
571 |
+
Returns:
|
572 |
+
Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
|
573 |
+
for every element in boxes1 and boxes2
|
574 |
+
"""
|
575 |
+
|
576 |
+
def box_area(box):
|
577 |
+
# box = 4xn
|
578 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
579 |
+
|
580 |
+
area1 = box_area(box1.T)
|
581 |
+
area2 = box_area(box2.T)
|
582 |
+
|
583 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
584 |
+
union = (area1[:, None] + area2 - inter)
|
585 |
+
|
586 |
+
iou = inter / union
|
587 |
+
|
588 |
+
lti = torch.min(box1[:, None, :2], box2[:, :2])
|
589 |
+
rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
|
590 |
+
|
591 |
+
whi = (rbi - lti).clamp(min=0) # [N,M,2]
|
592 |
+
diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
|
593 |
+
|
594 |
+
# centers of boxes
|
595 |
+
x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
|
596 |
+
y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
|
597 |
+
x_g = (box2[:, 0] + box2[:, 2]) / 2
|
598 |
+
y_g = (box2[:, 1] + box2[:, 3]) / 2
|
599 |
+
# The distance between boxes' centers squared.
|
600 |
+
centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
|
601 |
+
|
602 |
+
# The distance IoU is the IoU penalized by a normalized
|
603 |
+
# distance between boxes' centers squared.
|
604 |
+
return iou - (centers_distance_squared / diagonal_distance_squared)
|
605 |
+
|
606 |
+
|
607 |
+
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
608 |
+
labels=()):
|
609 |
+
"""Runs Non-Maximum Suppression (NMS) on inference results
|
610 |
+
|
611 |
+
Returns:
|
612 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
613 |
+
"""
|
614 |
+
|
615 |
+
nc = prediction.shape[2] - 5 # number of classes
|
616 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
617 |
+
|
618 |
+
# Settings
|
619 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
620 |
+
max_det = 300 # maximum number of detections per image
|
621 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
622 |
+
time_limit = 10.0 # seconds to quit after
|
623 |
+
redundant = True # require redundant detections
|
624 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
625 |
+
merge = False # use merge-NMS
|
626 |
+
|
627 |
+
t = time.time()
|
628 |
+
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
629 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
630 |
+
# Apply constraints
|
631 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
632 |
+
x = x[xc[xi]] # confidence
|
633 |
+
|
634 |
+
# Cat apriori labels if autolabelling
|
635 |
+
if labels and len(labels[xi]):
|
636 |
+
l = labels[xi]
|
637 |
+
v = torch.zeros((len(l), nc + 5), device=x.device)
|
638 |
+
v[:, :4] = l[:, 1:5] # box
|
639 |
+
v[:, 4] = 1.0 # conf
|
640 |
+
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
641 |
+
x = torch.cat((x, v), 0)
|
642 |
+
|
643 |
+
# If none remain process next image
|
644 |
+
if not x.shape[0]:
|
645 |
+
continue
|
646 |
+
|
647 |
+
# Compute conf
|
648 |
+
if nc == 1:
|
649 |
+
x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
|
650 |
+
# so there is no need to multiplicate.
|
651 |
+
else:
|
652 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
653 |
+
|
654 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
655 |
+
box = xywh2xyxy(x[:, :4])
|
656 |
+
|
657 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
658 |
+
if multi_label:
|
659 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
660 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
661 |
+
else: # best class only
|
662 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
663 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
664 |
+
|
665 |
+
# Filter by class
|
666 |
+
if classes is not None:
|
667 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
668 |
+
|
669 |
+
# Apply finite constraint
|
670 |
+
# if not torch.isfinite(x).all():
|
671 |
+
# x = x[torch.isfinite(x).all(1)]
|
672 |
+
|
673 |
+
# Check shape
|
674 |
+
n = x.shape[0] # number of boxes
|
675 |
+
if not n: # no boxes
|
676 |
+
continue
|
677 |
+
elif n > max_nms: # excess boxes
|
678 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
679 |
+
|
680 |
+
# Batched NMS
|
681 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
682 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
683 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
684 |
+
if i.shape[0] > max_det: # limit detections
|
685 |
+
i = i[:max_det]
|
686 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
687 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
688 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
689 |
+
weights = iou * scores[None] # box weights
|
690 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
691 |
+
if redundant:
|
692 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
693 |
+
|
694 |
+
output[xi] = x[i]
|
695 |
+
if (time.time() - t) > time_limit:
|
696 |
+
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
697 |
+
break # time limit exceeded
|
698 |
+
|
699 |
+
return output
|
700 |
+
|
701 |
+
|
702 |
+
def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
703 |
+
labels=(), kpt_label=False, nc=None, nkpt=None):
|
704 |
+
"""Runs Non-Maximum Suppression (NMS) on inference results
|
705 |
+
|
706 |
+
Returns:
|
707 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
708 |
+
"""
|
709 |
+
if nc is None:
|
710 |
+
nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes
|
711 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
712 |
+
|
713 |
+
# Settings
|
714 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
715 |
+
max_det = 300 # maximum number of detections per image
|
716 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
717 |
+
time_limit = 10.0 # seconds to quit after
|
718 |
+
redundant = True # require redundant detections
|
719 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
720 |
+
merge = False # use merge-NMS
|
721 |
+
|
722 |
+
t = time.time()
|
723 |
+
output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
|
724 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
725 |
+
# Apply constraints
|
726 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
727 |
+
x = x[xc[xi]] # confidence
|
728 |
+
|
729 |
+
# Cat apriori labels if autolabelling
|
730 |
+
if labels and len(labels[xi]):
|
731 |
+
l = labels[xi]
|
732 |
+
v = torch.zeros((len(l), nc + 5), device=x.device)
|
733 |
+
v[:, :4] = l[:, 1:5] # box
|
734 |
+
v[:, 4] = 1.0 # conf
|
735 |
+
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
736 |
+
x = torch.cat((x, v), 0)
|
737 |
+
|
738 |
+
# If none remain process next image
|
739 |
+
if not x.shape[0]:
|
740 |
+
continue
|
741 |
+
|
742 |
+
# Compute conf
|
743 |
+
x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
744 |
+
|
745 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
746 |
+
box = xywh2xyxy(x[:, :4])
|
747 |
+
|
748 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
749 |
+
if multi_label:
|
750 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
751 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
752 |
+
else: # best class only
|
753 |
+
if not kpt_label:
|
754 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
755 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
756 |
+
else:
|
757 |
+
kpts = x[:, 6:]
|
758 |
+
conf, j = x[:, 5:6].max(1, keepdim=True)
|
759 |
+
x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
|
760 |
+
|
761 |
+
|
762 |
+
# Filter by class
|
763 |
+
if classes is not None:
|
764 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
765 |
+
|
766 |
+
# Apply finite constraint
|
767 |
+
# if not torch.isfinite(x).all():
|
768 |
+
# x = x[torch.isfinite(x).all(1)]
|
769 |
+
|
770 |
+
# Check shape
|
771 |
+
n = x.shape[0] # number of boxes
|
772 |
+
if not n: # no boxes
|
773 |
+
continue
|
774 |
+
elif n > max_nms: # excess boxes
|
775 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
776 |
+
|
777 |
+
# Batched NMS
|
778 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
779 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
780 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
781 |
+
if i.shape[0] > max_det: # limit detections
|
782 |
+
i = i[:max_det]
|
783 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
784 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
785 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
786 |
+
weights = iou * scores[None] # box weights
|
787 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
788 |
+
if redundant:
|
789 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
790 |
+
|
791 |
+
output[xi] = x[i]
|
792 |
+
if (time.time() - t) > time_limit:
|
793 |
+
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
794 |
+
break # time limit exceeded
|
795 |
+
|
796 |
+
return output
|
797 |
+
|
798 |
+
|
799 |
+
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
800 |
+
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
801 |
+
x = torch.load(f, map_location=torch.device('cpu'))
|
802 |
+
if x.get('ema'):
|
803 |
+
x['model'] = x['ema'] # replace model with ema
|
804 |
+
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
|
805 |
+
x[k] = None
|
806 |
+
x['epoch'] = -1
|
807 |
+
x['model'].half() # to FP16
|
808 |
+
for p in x['model'].parameters():
|
809 |
+
p.requires_grad = False
|
810 |
+
torch.save(x, s or f)
|
811 |
+
mb = os.path.getsize(s or f) / 1E6 # filesize
|
812 |
+
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
|
813 |
+
|
814 |
+
|
815 |
+
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
816 |
+
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
817 |
+
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
818 |
+
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
819 |
+
c = '%10.4g' * len(results) % results # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
|
820 |
+
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
821 |
+
|
822 |
+
if bucket:
|
823 |
+
url = 'gs://%s/evolve.txt' % bucket
|
824 |
+
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
|
825 |
+
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
|
826 |
+
|
827 |
+
with open('evolve.txt', 'a') as f: # append result
|
828 |
+
f.write(c + b + '\n')
|
829 |
+
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
830 |
+
x = x[np.argsort(-fitness(x))] # sort
|
831 |
+
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
|
832 |
+
|
833 |
+
# Save yaml
|
834 |
+
for i, k in enumerate(hyp.keys()):
|
835 |
+
hyp[k] = float(x[0, i + 7])
|
836 |
+
with open(yaml_file, 'w') as f:
|
837 |
+
results = tuple(x[0, :7])
|
838 |
+
c = '%10.4g' * len(results) % results # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
|
839 |
+
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
840 |
+
yaml.dump(hyp, f, sort_keys=False)
|
841 |
+
|
842 |
+
if bucket:
|
843 |
+
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
|
844 |
+
|
845 |
+
|
846 |
+
def apply_classifier(x, model, img, im0):
|
847 |
+
# applies a second stage classifier to yolo outputs
|
848 |
+
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
849 |
+
for i, d in enumerate(x): # per image
|
850 |
+
if d is not None and len(d):
|
851 |
+
d = d.clone()
|
852 |
+
|
853 |
+
# Reshape and pad cutouts
|
854 |
+
b = xyxy2xywh(d[:, :4]) # boxes
|
855 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
856 |
+
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
857 |
+
d[:, :4] = xywh2xyxy(b).long()
|
858 |
+
|
859 |
+
# Rescale boxes from img_size to im0 size
|
860 |
+
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
861 |
+
|
862 |
+
# Classes
|
863 |
+
pred_cls1 = d[:, 5].long()
|
864 |
+
ims = []
|
865 |
+
for j, a in enumerate(d): # per item
|
866 |
+
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
867 |
+
im = cv2.resize(cutout, (224, 224)) # BGR
|
868 |
+
# cv2.imwrite('test%i.jpg' % j, cutout)
|
869 |
+
|
870 |
+
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
871 |
+
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
872 |
+
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
873 |
+
ims.append(im)
|
874 |
+
|
875 |
+
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
876 |
+
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
877 |
+
|
878 |
+
return x
|
879 |
+
|
880 |
+
|
881 |
+
def increment_path(path, exist_ok=True, sep=''):
|
882 |
+
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
883 |
+
path = Path(path) # os-agnostic
|
884 |
+
if (path.exists() and exist_ok) or (not path.exists()):
|
885 |
+
return str(path)
|
886 |
+
else:
|
887 |
+
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
888 |
+
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
889 |
+
i = [int(m.groups()[0]) for m in matches if m] # indices
|
890 |
+
n = max(i) + 1 if i else 2 # increment number
|
891 |
+
return f"{path}{sep}{n}" # update path
|